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Agriculture is regarded as one of the most crucial sectors in guaranteeing food 
security. However, as the world’s population grows, so do agri-food demands, 
necessitating a shift from traditional agricultural practices to smart agriculture 
practices, often known as agriculture 4.0. It is critical to recognize and handle the 
problems and challenges related with agriculture 4.0 in order to fully profit from 
its promise. As a result, the goal of this research is to contribute to the development 
of agriculture 4.0 by looking into the growing trends of digital technologies in the 
field of agriculture. A literature review is done to examine the scientific literature 
pertaining to crop farming published in the previous decade for this goal. This 
thorough examination yielded significant information on the existing state of digital 
technology in agriculture, as well as potential future opportunities.
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1. Introduction 
1.1. A worldwide dilemma of food security
Food security is a multifaceted notion that aims to eliminate hunger by 

assuring a steady supply of nutritious food. It is defined by a four-pillar para-
digm, each of which is necessary to provide food security [1]. Food security 
is becoming a severe global concern as a result of anthropogenic factors such 
as rapid population expansion, urbanization, industrialization, farmland loss, 
freshwater scarcity, and environmental degradation. This is due to the fact that 
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these factors have a direct impact on the agricultural industry, which is the 
world’s principal source of agri-food production. By 2050, it is expected that 
the global population will rise from 7.7 billion to 9.2 billion, urban population 
will rise by 66 percent, arable land will decline by approximately 50 million 
hectares, global GHG emissions (source of CO 2 – promote crop disease and 
pest growth) will rise by 50 percent, agri-food production will decline by 20%, 
and food demand will rise by 59 to 98 percent, posing an imminent threat. To 
meet rising food demands, agricultural practitioners around the world will need 
to increase crop and livestock production to maximize agricultural output. The 
emphasis of this review paper is crop farming, which includes the production 
of both food and cash crops. 

A typical agri-food value chain displaying three key stages in the production 
of agricultural products: pre-field (pre-plantation stage), in-field (plantation and 
harvesting stage), and post-field (post-harvesting stage). All of the stages are 
important in the value chain, but in this examination, we will focus on the sec-
ond stage, in-field, which includes numerous crop-growing operations such as 
ploughing, sowing, spraying, and harvesting, among others. Traditional agricul-
tural approaches are now used in these procedures, which are labor-intensive, 
require arable land, time, and a significant quantity of water (for irrigation), and 
make it difficult to produce enough food [5]. A part of the problem is also due 
to the improper application of pesticides and herbicides, as well as the misuse 
of available technologies, both of which hurt crops and ultimately result in 
agricultural waste [6]. These problems can be solved by combining advanced 
technologies and computer-based applications that ensure higher crop yields, 
less water use, better pesticide/herbicide use, and improved crop quality. This 
is where the concept of smart agriculture comes into play.

1.2. Smart Agriculture
Every industry is being revolutionized and reshaped by Industry 4.0. It’s a 

strategic initiative that combines emerging disruptive digital technologies like 
the Internet of Things (IoT), big data and analytics (BDA), system integration 
(SI), cloud computing (CC), simulation, autonomous robotic systems (ARS), 
augmented reality (AR), artificial intelligence (AI), wireless sensor networks 
(WSN), cyber-physical systems (CPS), digital twin (DT), and additive manu-
facturing (AM) to enable the digitization of the industry [7]. 

Agriculture 4.0, also known as smart agriculture, smart farming or digital 
farming [7], is the next phase of industrial agriculture, fueled by the integra-
tion of these technologies in agriculture. Farmers can use smart agriculture to 
address a variety of agricultural food production concerns such as farm pro-
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ductivity, environmental impact, food security, crop losses, and sustainability. 
Farmers, for example, can connect to farms remotely, regardless of location 
or time, using IoT-enabled equipment based on WSNs to monitor and control 
farm operations. Drones outfitted with hyper spectral cameras can collect data 
from a variety of sources on farmlands, while autonomous robots can assist 
or complete repetitive chores on farms. Data analytics techniques can be used 
to examine the obtained data, and computer programs can be utilized to help 
farmers make decisions.

Similarly, smart agriculture can monitor and analyze a wide range of pa-
rameters related to environmental factors, weed control, crop production status, 
water management, soil conditions, irrigation scheduling, herbicides and pes-
ticides, and controlled environment agriculture to increase crop yields, reduce 
costs, improve product quality, and maintain process inputs through the use of 
modern systems [8].

1.3. Research Motivation and Contribution 
The reason for writing this assessment is that digital technologies in agri-

cultural systems provide new strategic solutions for increasing farm output ef-
ficiency and effectiveness. Furthermore, digital transformation paves the door 
for modern farming technologies like vertical farming (hydroponics, aquapon-
ics, and aeroponics) to be used, which has the potential to solve food security 
issues. However, there are a number of issues and restrictions connected with 
this change from a technological, socioeconomic, and management perspective 
that must be overcome in order to fully realise the potential of agricultural 4.0 
[9].A number of publications [9–18] have examined developing trends in the 
development of agriculture 4.0 by offering concise information on essential 
uses, benefits, and research problems of smart farming. These studies’ research 
focuses on either explaining more general technical aspects while focusing on 
only one or a few digital technologies, or improving agricultural supply chain 
performance, or developing an agriculture 4.0 definition, or achieving sustain-
able agronomy through precision agriculture, or proposing a smart farming 
framework. Nonetheless, these studies do not include an explicit discussion of 
the tools and techniques utilized to construct various systems, as well as their 
maturity level. There are also few studies that look at the consequences of dig-
ital technology in modern soilless farms including hydroponics, aquaponics, 
and aeroponics (indoor/outdoor). As a result, in order to promote conversation 
in this field, it is necessary to examine the emergence of agriculture 4.0 from 
many angles. This research seeks to provide a comprehensive overview of dig-
ital technologies used in the second stage of the agricultural production value 
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chain (in-field) for various farm types as described in section 1.1. The study’s 
key theoretical contribution is the analysis and dissemination of the tools and 
techniques used, as well as the farm type, maturity level of produced systems, 
and potential obstacles or inhibiting factors in agriculture 4.0 development. Re-
searchers and agricultural practitioners will benefit from the review’s insights 
in future study on agriculture 4.0. 

1.4. Paper organization 
The following is the structure of the paper after the introduction: 
Section 2 discusses the methodology used to collect relevant literature; Sec-

tion 3 then presents the statistical results obtained after a general analysis of the 
selected research studies; Section 4 then provides a detailed overview of the 
core technologies used in agricultural digitization; Section 5 then highlights the 
technical and socio-economic roadblocks to digital integration in agriculture; 
and finally, Section 6 outlines a discussion of the research questions.

2. Research Methodology 
A systematic literature review (SLR) is a technique for organizing and iden-

tifying research related to a specific topic [19]. SLR is used in this study to look 
into the state of Industry 4.0 technologies in the agricultural industry. Cases 
where the phrase ‘agricultural’ occurred in the title, abstract, or keywords of 
an article with any of the ‘Industry 4.0 technologies’ described in section 1.2 
are specifically sought. A review procedure is established prior to conducting 
the SLR to ensure a transparent and high-quality research process, which are 
the features that distinguish a systematic literature review [20]. By conducting 
thorough literature searches, the review methodology also helps to reduce bias. 
The creation of the research questions, the defining of the search method, and 
the specification of inclusion and exclusion criteria are all part of this process. 

To conduct SLR, this paper uses a recommended reporting item for system-
atic reviews and meta-analysis (PRISMA) approach. PRISMA is a minimum 
collection of items based on evidence that is used to guide the construction of 
systematic literature reviews and other meta-analyses [19].

2.1. Review Protocol 
Before doing the bibliographic analysis, a review methodology is estab-

lished to identify, analyze, and interpret data that are relevant to the research 
focus. To begin, research questions are developed in order to provide insight 
into the study of published studies in the research area of interest from many 
perspectives. These are the questions that must be addressed in the research. The 
search strategy is then created, which aids in the identification of appropriate 
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keywords later in the search equation, as well as the identification of relevant 
information sources, such as academic databases and search engines that allow 
access to vast amounts of digital documentation. Science Direct, Scopus, and 
IEEE Xplore are three online research archives that are utilized to find relevant 
studies. Finally, boundaries are created by predefining inclusion and exclusion 
criteria for further inquiry and content assessments of selected articles in order 
to narrow the search results of each database.

2.2. Evaluation Process 
Identification, screening, eligibility, and inclusion are the four stages of the 

literature search process that are evaluated. Consolidation is done for the re-
moval of duplicate items in the identification step after initial metadata filtering 
by the use of search expressions. After this phase, the number of publications is 
reduced. The titles and abstracts of the papers are reviewed during the screening 
stage, and the most relevant publications are chosen for integral reading. In the 
third stage, full-text screening of these papers is done to ensure that they are 
eligible for this paper’s goal.

2.3. Threats to Validity 
(i) SLR replication: Because the current search is confined to only three on-

line repositories, the provided SLR is vulnerable to risks to validity. 
Additional sources could potentially lead to the discovery of more pub-

lications. Validity can be regarded satisfactorily addressed because the SLR 
process is clearly defined in sub-sections 2.1 and 2.2. However, it is possible 
that slightly different publications will be found if this SLR is replicated. This 
variation could be due to various personal choices made throughout the PRIS-
MA screening and eligibility phases, but it’s highly improbable that the overall 
results would alter.

(ii)The search string used to discover the relevant papers covers the entire 
spectrum of SLR; however it’s possible that some important studies were over-
looked. More research may be found if more keywords and synonyms in the 
search are included.

3. Digitization Trends in Agriculture 
Although the agriculture business is making significant progress in terms 

of digital technology adoption, it is still lagging behind other industries such 
as healthcare, manufacturing, mining, automotive, energy, and others [15]. The 
crop farming method considered while designing an application or framework 
is referred to as the farm type. The farming method, for example, can be soil-
based or soilless. Open-air fields (conventional outdoor agricultural farms) and 
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greenhouse farms are included in the soil-based farming category (indoor). The 
soilless farming category, on the other hand, includes modern farming tech-
niques such as aquaponics, aeroponics, and hydroponics (mostly indoor). In 
the recent decade, autonomous robotics systems (including unmanned guided 
vehicles and unmanned aerial vehicles (drones)), the internet of things, and 
machine learning appear to be the most commonly used technology in agricul-
ture. Agriculture’s growing sectors include big data, wireless sensor networks, 
cyber-physical systems, and digital twins. Furthermore, in contrast to indoor 
farms, open air farms are the most usually examined in research investigations. 
Few publications exist for soilless farming systems (aquaponics, aeroponics, 
and hydroponics), implying that these modern farming practices are still in 
their infancy. Similarly, each use case’s services are identified and classified 
into nine service categories: I crop management, CM (estimation/harvesting 
period and seed plantation/prediction of crop yield/ growth rate/harvesting/ 
pollination/ spraying (fertilizer/ pesticide)); ii) crop quality management, CQM 
(fresh weight, green biomass, height, length, width, leaf density, piment content 
(chlorophyll), and phytochemical composition); iii) water and environmental 
management, WEM (monitoring and control of flow rate, water level, water 
quality (nutrients), temperature, humidity, CO2, and weather forecasts, among 
other things); iv) irrigation management, IM (water stress detection and sched-
uling); v) farm management, FM (monitoring of farm operations, tracking and 
counting products, determining production efficiency, financial analysis, energy 
consumption analysis, technology integration, and decision-making);

PDM (pest and disease management) is a term used to describe the man-
agement of pests and diseases (pest identification and disease detection) SM 
(Soil Management) vii) (moisture content, soil nutrients, fertilizer needs and 
application) WUVM (weed/unknown vegetation mapping, classification, and 
pesticide application) viii) weed and unwanted vegetation management FDC 
(fruit detection and counting), and ix) 

The role of various digital technologies in smart farming is depicted in 
these categories. Crop management characteristics such as crop yield prediction, 
growth rate estimation, and harvesting period evaluation are the most 4.0 in the 
previous decade, whereas soil management, fruit identification and counting, 
and crop quality management receive very less attention. The European Union’s 
TRL scale, which divides system maturity into three generic categories [21], is 
used to assess the technology readiness level (TRL) of all use cases. The first 
level is conceptual, which corresponds to European TRL 1–2 (use case is in 
concept phase), the second level is prototype, which corresponds to Europe-
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an TRL 3–6 (use case is functional even without all planned features), and the 
third level is deployed, which corresponds to European TRL 7–9. (Use case 
is mature with all the possible functions). Each use case’s TRL was produced 
in a few experiments. It has been noticed that smart agricultural systems have 
made little progress from the concept and prototype stages to the commercial 
stage. The majority of use cases, for example, are still in the prototype stage.

4. Agriculture 4.0 enabling technologies 
4.1. Internet of Things driven agricultural systems 
The Internet of Things (IoT) is a network of interconnected computing de-

vices, sensors, appliances, and machines that are all connected to the internet 
and have their own unique identities and capacities for remote sensing and 
monitoring [21]. Network layer (communication), perception layer (hardware 
devices), , middleware layer (device management and interoperability), service 
layer (cloud computing), application layer (data integration and analytics), and 
end-user layer are the six layers of the IoT reference architecture (user-inter-
face). IoT devices on the physical layer in the agricultural domain collect data 
on environmental and crop characteristics such as temperature, humidity, pH 
value, water level, leaf colour, fresh leaf weight, and so on. The network layer is 
responsible for transmitting this information, and its architecture is determined 
by the field size, farm location, and type of farming method. ZigBee, LoRa, and 
Sigfox, for example, are widely utilized and employed in outdoor fields because 
they are less expensive, have low energy consumption, and have a long trans-
mission range [22, 23]. Bluetooth, despite being a secure technology, is only 
employed in indoor farms due to its limited transmission range [22]. Due to its 
high costs and high energy consumption, Wi-Fi is not a promising technology 
for agricultural applications [22]. On the other hand, RFID (radio frequency 
identification) and NFC (near field communication) technologies are increas-
ingly being used in agricultural systems for product tracking [24]. For periodic 
monitoring of environmental and soil characteristics, GPRS or mobile commu-
nication technology (2G, 3G, and 4G) is utilized. Furthermore, HTTP, WWW, 
and SMTP are the most commonly utilized communication protocols in agri-
cultural contexts. Similarly, middleware HYDRA and SMEPP are commonly 
used in agricultural systems to enable interoperability and system security for 
their context-aware functionalities [25]. 

Cloud computing approaches are used in the service layer to store data. 
This information is then used on the application layer to create smart apps that 
farmers, agriculture experts, and supply chain professionals can use to improve 
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farm monitoring and productivity. The use of IoT in agriculture is intended to 
provide farmers with decision-making tools and automation technologies that 
allow them to seamlessly integrate knowledge, products, and services in order to 
increase production, quality, and profit. A slew of research have been conduct-
ed and presented on the incubation of IoT concepts in the agricultural industry. 
The development of IoT-based agricultural systems has addressed a variety of 
technological and architectural concerns. However, most of these technologies 
are now in the conceptual stage or in prototype form (not commercial). Farm 
management, irrigation control, crop development, health monitoring, and dis-
ease detection are all priorities. 

Some of these studies also explained how IoT is being used in current ag-
ricultural systems like vertical farming (soilless farming - aquaponics, hydro-
ponics, and aeroponics) and greenhouse farming (soil-based). Furthermore, the 
majority of studies have been focused on a single issue.

4.2. Wireless sensor networks in agriculture 
A wireless sensor network (WSN) is a technology that is utilized in an Inter-

net of Things (IoT) system. It is defined as a collection of spatially distributed 
sensors for monitoring environmental physical conditions, temporarily storing 
obtained data, and transferring the information to a central point [22]. A wire-
less sensor network (WSN) for smart farming is made up of multiple sensor 
nodes connected by a wireless connection module. These nodes have a variety 
of skills that allow them to self-organize, self-configure, and self-diagnose (for 
example, processing, trans- mission, and feeling). There are various varieties of 
WSNs, which are classified based on the environment in which they are used. 
TWSNs (terrestrial wireless sensor networks), WUSNs (wireless underground 
sensor networks), UWSNs (underwater wireless sensor networks), WMSNs 
(wireless multimedia sensor networks), and MWSNs (mobile wireless sensor 
networks) are a few examples [26]. TWSN and UWSN are commonly utilized 
in agricultural applications. TWSN nodes are sensors that collect data from 
the environment and are located above ground. The second type of WSN is 
WUSNs, which are WSNs with sensor nodes embedded in the soil. Lower fre-
quencies easily enter the soil in this environment, whereas higher frequencies 
are severely attenuated [27]. Because of the limited communication radius, the 
network requires a larger number of nodes to cover a big area. Many research 
publications on the use of WSN for various outdoor and indoor farm applica-
tions, such as irrigation management, water quality testing, and environmental 
monitoring, are accessible in the literature. The goal of these experiments was 
to create WSN architectures that were simple, low-cost, energy-efficient, and 
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scalable. However, several aspects of WSNs, such as minimum maintenance, 
robust and fault-tolerant architecture, and interoperability, require more study. 

4.3. Cloud computing in agriculture 
Cloud computing (CC) is defined as a model for enabling convenient, ubiq-

uitous, on-demand network access to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, applications, and services) that can 
be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction, according to the National Institute of Standards and 
Technologies (NIST) [28]. The datacenter (hardware), infrastructure, platform, 
and application layers make up the primary architecture of CC [29]. Each of 
these layers corresponds to one of three cloud service models: SaaS (software 
as a service), PaaS (platform as a service), and IaaS (infrastructure as a service) 
(IaaS). In the agriculture sector, cloud computing has gotten a lot of attention in 
the last decade because it provides: 1) low-cost storage for data collected from 
various domains via WSNs and other preconfigured IoT devices, 2) large-scale 
computer systems to make intelligent decisions by converting raw data into 
usable knowledge, and 3) a secure platform for developing agricultural based 
IoT applications [30]. 

CC is used to develop various agricultural applications in conjunction with 
IoT and WSN. CC technology is also utilized to develop operational farm man-
agement systems (FMSs) that help farmers and farm managers monitor farm 
activities more efficiently. The traceability of agri-product quality is another 
area of interest that is being investigated in global research [31]. However, only 
preliminary research has been done to see if traceability complies with food 
safety and quality criteria. The usage of cloud-based agricultural systems has 
the potential to address issues such as rising food demand, pollution from pes-
ticides and fertilizers, and the safety of agricultural products. These FMSs, on 
the other hand, lack the flexibility to offer run-time customization in response 
to specific farmer needs. Furthermore, because most farm data is fragmented 
and distributed, recording farm operations accurately in existing FMSs systems 
is problematic [32].

4.4. Edge/fog computing in agriculture 
The rapid expansion of IoT has resulted in an explosion of sensors and smart 

devices, creating massive amounts of data. The processing and analysis of such a 
large volume of data in real time is difficult since it puts a strain on the cloud serv-
er and slows response times. When dealing with such a massive data set, a cloud 
server alone will not be able to offer real-time responses. Furthermore, because 
IoT applications require a constant exchange of information between devices and 
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the cloud, they are susceptible to network latency, making CC unsuitable for these 
applications [23]. The introduction of the edge computing idea has the potential 
to overcome the CC issues. This novel computing architecture places computa-
tional and storage resources (such as cloudlets or fog nodes) closer to data sources 
like mobile devices and sensors at the network’s edge. This allows for real-time 
analytics while maintaining data security on the device [23]. Although edge com-
puting has exciting potential for smart agriculture, its applications in agricultural 
systems are still in their infancy. As a result, there are limited research studies in 
this field. The majority of the edge computing-based agricultural systems covered 
in these papers are prototypes that solve a small number of challenges across a 
variety of agricultural disciplines. Interoperability and scalability issues haven’t 
gotten enough attention so yet. Agricultural robots combine emerging technolo-
gies such as computer vision; wireless sensor networks (WSNs), satellite navi-
gation systems (GPS), artificial intelligence (AI), cloud computing (CC), and the 
Internet of Things (IoT) to help farmers improve productivity and quality of ag-
ricultural products. AARS in smart farming can be mobile or fixed [33]. Mobile 
AARS can move around the working field. Unmanned ground vehicles (UGVs) 
and unidentified aerial vehicles (UAVs) are the two types of mobile AARSs, as 
discussed in the following sections. 

4.5.1. Unmanned ground vehicles in agriculture
Unmanned ground vehicles (UGVs) are agricultural robots that work with-

out the use of a human operator on the ground. A platform for locomotive ap-
paratus and manipulator, navigation sensors, a supervisory control system, an 
interface for the control system, communication links for information exchange 
between devices, and system architecture for integration between hardware and 
software agents are the main components of UGVs [34]. The control architec-
ture of a UGV can be remote-operated (controlled via an interface by a human 
operator) or totally autonomous (operated without the use of a human control-
ler using artificial intelligence technology) [34]. Locomotive systems, likewise, 
can be based on wheels, tracks, or legs [34]. Legged robots are uncommon in 
agriculture, despite their great terrain flexibility, inherent Omni directionality, 
and soil protection. These robots, however, offer a disruptive locomotion mech-
anism for smart farms when paired with wheels (wheel-legged robots). UGVs 
should meet specific requirements, such as small size, maneuverability, resil-
ience, efficiency, human-friendly interface, and safety, in addition to the nec-
essary features for infield operations, in order to improve crop yields and farm 
productivity. A 4WD locomotive system is used in the majority of agricultural 
robotic systems due to its ease of manufacture and control. 
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The disadvantage of 4WD is that terrains with stone elements and/or voids 
have a significant impact on the wheels [34]. As a result, other mechanisms, 
such as legged or wheel-legged locomotive systems, should be investigated. 
Although some robots include computer vision systems, most of these robots 
are designed with a low-cost computer vision system, such as traditional RGB 
cameras, due to the difficulties of establishing an accurate and dependable sys-
tem that can replace manual labour. Furthermore, the majority of the systems 
mentioned above are still in the research phase, with no large-scale commer-
cial application.

4.5.2. Unmanned aerial vehicles in agriculture 
Unmanned aerial vehicles (UAVs), sometimes known as aerial robots, are 

planes that do not have a human pilot on board. There are many different types 
of UAVs [35] depending on the technology used to fly (wing structure) and the 
level of autonomy. Fixed-wing (planes), single-rotor (helicopter), hybrid system 
(vertical takeoff and landing), and multi-rotor UAVs are examples of wing types 
(drone). Drones (multi-rotor technology), which are raised and driven by four 
(quad-rotor) or six (hex-rotor) rotors, have grown in popularity in the agricul-
ture sector because to their mechanical simplicity in comparison to helicopters, 
which rely on a much more complex plate control mechanism [36]. Similarly, 
UAVs can be tele-operated or tele-commanded, depending on their autonomy 
level, with the pilot providing references to each actuator of the aircraft to con-
trol it in the same way that an onboard pilot would, or tele-commanded with the 
aircraft relying on an automatic controller on board to maintain a stable flight 
[35]. Agricultural UAVs with the right sensors (vision, infrared, multispectral, 
and hyper spectral cameras, for example) can collect data (vegetation, leaf area, 
and reflectance indexes) from their fields to monitor dynamic changes in crops 
that aren’t visible from the ground [37]. Farmers can deduce information about 
crop illnesses, nutrient deficits, water level, and other agricultural growth char-
acteristics using this data. Farmers might plan possible cures using this knowl-
edge (irrigation, fertilization, weed control, etc.). 

The majority of the systems mentioned above are still in the research stage, 
with no large-scale commercial use. Other issues with these UAVs include bat-
tery life and flight time [35]. Lithium-ion batteries are currently in use because 
their capacity exceeds that of conventional batteries. 

However, increasing the battery capacity increases the weight of the drone, 
and research is currently underway to overcome this issue. 

Furthermore, existing UAVs have complicated user interfaces that can only 
be used by experts to accomplish agricultural chores. People who are elderly 
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or unfamiliar with UAV technology will be able to control it more readily if 
the user interface is improved and made more human-centered with multimod-
al feedback. 

4.6. Big data and analytics in agriculture 
Rapid advancements in IoT and CC technologies have massively expanded 

the amount of data available. Textual content (structured, semi-structured, and un-
structured) and multimedia content (e.g., videos, photos, and audio) are included 
in this data, also known as Big Data (BD) [38]. Big data analytics is the practice 
of analyzing large amounts of data to find hidden patterns, unknown relationships, 
market trends, client preferences, and other important information (BDA). Big 
data is usually classified into five dimensions, each of which is represented by a V. 

The concept of BD-driven smart agriculture is very new, but its trend is 
good because it has the potential to make a dramatic change in the food supply 
chain and boost food security through higher productivity. Agricultural big data 
is typically generated from a variety of sources in agriculture, including ground 
sensors, aerial vehicles, and ground vehicles equipped with special cameras and 
sensors; governmental bodies in the form of reports and regulations; private 
organizations through online web services; farmers in the form of knowledge 
gained through surveys; and social media [39]. Depending on the agricultural 
domain, the data can be environmental (weather, climate, moisture level, etc.), 
biological (plant disease), or geospatial, and it comes in a variety of volumes, 
speeds, and formats [40]. The information is acquired and stored in a computer 
database, where it is analyzed using computer algorithms for seed characteris-
tics, weather patterns, soil attributes (such as pH or nutrient content), marketing 
and trade management, consumer behaviour, and inventory management. In 
agriculture, a range of strategies and tools are used to examine large data. The 
most often employed techniques include machine learning, cloud-based plat-
forms, and modelling and simulation. Machine learning technologies are used 
to solve problems like prediction, clustering, and classification, while cloud 
platforms are utilized for large-scale data storage, preprocessing, and visual-
ization. There are still numerous potential areas where BDA can be used to 
address various agricultural concerns that are not well covered in existing lit-
erature. For example, data-intensive greenhouses and indoor vertical farming 
systems, quality control and health monitoring of crops in outdoor and indoor 
farms, genetic engineering, decision support platforms to help farmers design 
indoor vertical farms, and scientific models for policymakers to help them make 
decisions about the physical ecosystem’s sustainability. Finally, the majority of 
systems are still in the prototype stage.
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4.7. Artificial intelligence in agriculture 
Artificial intelligence (AI) is the study of theories and computer systems that 

can perform activities that need human intelligence, such as sensory percep-
tion and decision-making [41]. AI, particularly in the areas of machine learning 
(ML) and deep learning (DL), is seen as one of the primary forces driving the 
digitization of agriculture when combined with CC, IoT, and big data. These 
technologies have the potential to increase crop production, harvesting, pro-
cessing, and marketing in real time [42]. ML and DL algorithms are being used 
to determine various parameters such as weed detection, yield prediction, and 
disease identification in a number of intelligent agricultural systems. The fol-
lowing two sub-sections go through these systems.

4.7.1. Machine learning in agriculture 
supervised learning (linear regression, regression trees, non-linear regres-

sion, Bayesian linear regression, polynomial regression, and support vector 
regression), and unsupervised learning (hierarchal clustering, k-means cluster-
ing, neural networks (NN) anomaly detection, principal component analysis, 
independent component analysis, a-priori algorithm, and singular value decom-
position (SVD)). Weed detection, Crop yield prediction, disease and weather 
prediction (rainfall), soil properties estimation ( moisture content, type, pH, 
temperature, etc.), water management, fertilizer amount determination, and 
livestock production and management all use machine learning techniques and 
algorithms [2, 43]. According to the study of these publications, “crop yield 
prediction” is an extensively researched area, with the most widely utilized ML 
approaches to allow smart farming being linear regression [4], neural network 
(NN), random forest (RF), and support vector machine (SVM) [2]. 

The presented use cases are still in the research phase, and no commercial 
use has been recorded as of yet. Furthermore, AI and machine learning ap-
proaches are found to be underutilized in greenhouse and indoor vertical farm-
ing systems, particularly hydroponics, aquaponics, and aeroponics. There are 
only a handful publications that use machine learning techniques. To enable 
digital farming, new methodologies such as federated learning and privacy 
preserving methods are being developed in light of the digital transformation’s 
cyber-security and data privacy problems [44]. These methods create machine 
learning models from local parameters rather than sharing private data samples, 
reducing security concerns.

4.7.2. Deep learning in agriculture 
Deep learning (DL) is an extension of classical machine learning (ML) 

because extra “depth” (complexity) is added to the model, it can accomplish 
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difficult tasks (predictions and classification) extraordinarily well and quick-
ly. DL’s main benefit is feature learning, which includes extracting features 
(high-level information) from big datasets automatically [45]. Long short term 
memory (LSTM) networks, convolutional neural networks (CNNs), recurrent 
neural (RNN) networks, generative adversarial networks (GANs), radial basis 
function networks (RBFNs), multilayer perceptron (MLPs), feed-forward ar-
tificial neural network (ANN), self-organizing maps (SOMs), deep belief net-
works (DBNs), restricted Boltzmann machines (RBMs), and autoencoders are 
examples of deep learning algorithms Various sites [46] provide a full overview 
of these methods, popular architectures, and training systems. DL algorithms 
are commonly used in agriculture to solve problems related to computer vision 
applications that aim to predict key parameters such as crop yields, soil mois-
ture content, weather conditions, and crop growth conditions; detect diseases, 
pests, and weeds; and identify leaf or plant species [47]. Computer vision is an 
interdisciplinary field that has exploded in popularity in recent years thanks to 
the rise of CNNs. It provides methods and techniques for accurately process-
ing digital images and allowing computers to analyze and comprehend the vi-
sual world [48]. CNNs, generally is known as Convet and its derivatives, are 
the most widely used deep learning algorithms in agricultural applications. 
Region-based CNNs (RCNN), Fast-RCNN, Faster-RCNN, YOLO, and Mask-
RCNN are some of the CNN variants, with the first four being the most typi-
cally used to address object detection issues. On the other side, Mask-RCNN 
is utilized to overcome instance segmentation issues. The reader can find a 
thorough explanation of these algorithms and their applications in the exist-
ing bibliography [47]. Other DL approaches have been employed in a few re-
search. When it comes to datasets, the majority of deep learning models are 
trained on photographs, with only a few trained on sensor data collected in the 
field. This demonstrates that DL can be used on a wide range of datasets. It’s 
also worth noting that the majority of the research is focused on outdoor farms, 
with next-generation farms (environment-controlled) receiving less attention. 
Though digital farming has the potential to be enabled by DL, most systems 
are still in the prototype stage. Furthermore, the additional obstacles created 
by cyber-security and privacy concerns necessitate the improvement of current 
deep learning and computer vision technologies.

4.8. Agricultural decision support systems 
A decision support system (DSS) is a smart system that assists stakehold-

ers and potential users in making decisions in response to specific needs and 
challenges by offering operational responses based on meaningful informa-
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tion retrieved from raw data, documents, personal knowledge, and/or models 
[49]. Data-driven, model-driven, communication-driven, document-driven, and 
knowledge-driven DSS are all possibilities. The following source [50] lists the 
key features of these DSSs. The volume of farming data has exploded as a re-
sult of the advent of agriculture 4.0. Platforms like agricultural decision support 
systems (ADSS) are necessary to convert this heterogeneous data into practical 
knowledge in order to make evidence-based and precise judgments about farm 
management and facility layout [51]. ADSSs have gotten a lot of interest in the 
agriculture industry over the last few years. A variety of agricultural concerns, 
such as farm management, water management, and environmental management, 
have been addressed by a number of ADSSs. Most ADSSs have been found 
to ignore expert knowledge, which is extremely useful since it enables for the 
construction of systems that are tailored to the demands of the users. Complex 
GUIs, insufficient re-planning components, a lack of prediction and forecasting 
abilities, and a lack of ability to adjust to unpredictable and dynamic elements 
are some of the other identified faults with some of these ADDSs. It’s also worth 
noting that all of the ADSSs are for outside agriculture systems and are still in 
development. In comparison, the use of ADSS in indoor soilless agriculture is 
currently underutilized.

4.9. Agricultural cyber-physical systems 
A cyber-physical system (CPS) is an automated distributed system that inte-

grates physical processes with communication networks and computing infra-
structures [52], and it is one of the key technologies of Industry 4.0. There are 
three standard CPS reference architecture models: 5C, RAMI 4.0, and IIRA, 
which may be found in full at the following source [53]. Among these, the 5C 
is a well-known and widely used reference model. CPS takes advantage of a 
number of existing technologies, including agent systems, IoT, CC, augmented 
reality, big data, and machine learning (ML) [54]. Scalability, flexibility, au-
tonomy, reliability, resilience, safety, and security are all improved as a result 
of its adoption.

One of the most difficult domains that can benefit from CPS technology is 
agriculture. Agricultural cyber-physical systems (ACPSs) combine advanced 
electronic technology with agricultural infrastructure to create integrated farm 
management systems that interact with the physical environment to keep crops 
growing at their best [55]. ACPSs collect high-accuracy data regarding climate, 
soil, and crops and utilize it to manage watering, humidity, and plant health, 
among other things. For the management of various services, a range of ACPSs 
have been created; however, most of these systems are still in the prototype and 
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conceptual stages. Furthermore, the majority of studies are for outdoor farms, 
with only a few publications published on soil-based greenhouse systems. There 
has been no research on indoor soilless agricultural methods. Since of its pro-
spective applications in a variety of fields, ACPSs have sparked a lot of academ-
ic interest; nevertheless, deploying CPS models in real-world applications is 
still a difficulty because it requires the right hardware and software [56]. When 
designing ACPSs, special emphasis should be paid to autonomy, robustness, and 
resilience in order to deal with the unpredictable nature of the environment and 
the unknown characteristics of agricultural facilities. ACPSs are influenced by 
a variety of factors, including humans, sensors, robots, crops, and data.. ACPSs 
must be properly and extensively developed to provide a seamless operation 
while avoiding conflicts, errors, and disturbances.

4.10. Digital twins in agriculture 
A digital twin (DT) is a dynamic virtual replica of a real-life (physical) 

object that mimics its behaviours and states across multiple stages of the ob-
ject’s lifecycle by combining real-world data, simulation, and machine learning 
models with data analytics to enable understanding, learning, and reasoning 
[57]. The physical and virtual entities, the physical and virtual environments, 
the metrology, and realization modules that perform the physical to virtual and 
virtual to physical connection or twinning, the twinning and twinning rate, and 
the physical and virtual processes are all required for a complete description of 
the DT concept for any physical system [58]. Because of advancements in tech-
nology such as the Internet of Things, big data, wireless sensor networks, and 
cloud computing, the DT concept has gained traction. This is due to the fact that 
these technologies enable real-time monitoring of physical twins at high spatial 
resolutions using both small devices and distant sensing, which generate ev-
er-increasing data streams [21]. In comparison to other fields, the notion of DT 
in agricultural applications is relatively new, with the first references appearing 
in 2017; as a result, its added value has not yet been thoroughly studied [21]. 
Because of its reliance on natural circumstances (temperature, soil, humidity), 
as well as the presence of living and non-living physical twins (plants and an-
imals), framing is a very complex and dynamic realm (indoor farm buildings, 
grow beds, outdoor agricultural fields, agricultural machinery). 

Non-living physical twins interact directly or indirectly with plants and 
animals (living physical twins), posing more obstacles for DT in agriculture, 
whereas non-living physical twins are the focus of DT in other domains such 
as manufacturing. The majority of research has been on open-air agricultur-
al systems. There is just one study that proposes DT for a soil-based vertical 



439Siberian Journal of Life Sciences and Agriculture, Том 14, №6, 2022

farming system and one study that implements DT for a soilless vertical farm-
ing system (aquaponics). This could be due to the difficulty of designing and 
managing modern farming systems. Furthermore, the majority of DTs are still 
in the research phase, with no commercial deployment planned. Cost savings, 
disaster prevention, clearer decision making, and efficient management oper-
ations are all reported benefits of DT applications in agriculture, which can be 
applied to a variety of agricultural subfields such as plant and animal breeding, 
aquaponics, vertical farming, cropping systems, and livestock farming. While 
DT technology offers a lot of promise, achieving synchronization between the 
real and digital worlds is difficult. Due to the quirks of living physical twins, 
the intricacy of this procedure is magnified in agricultural settings. As a result, 
agricultural DT should begin with micro-farms, which can then be gradually up-
graded to a more intelligent and autonomous form by adding more components.

4.11. Roadblocks in digitization of agriculture industry 
This section outlines a series of interconnected hurdles to a wider adoption of 

digital technologies in agriculture. Following a review of the literature, 21 barri-
ers were found, which were divided into technical and socioeconomic categories.

4.12. Technical roadblocks 
•Interoperability: Data is regarded as a critical component in the success of 

smart systems. Agricultural data is typically gathered from a variety of sources, 
including thousands of individual farmlands, animal industries, and business ap-
plications. Data can be in a variety of formats, making data integration difficult. 
As a result, after systematic data collection, storage, processing, and knowledge 
mining, data interoperability is critical to increasing the value of this widely 
distributed data [59]. Interconnected and interoperable devices are also required 
for successful communication between heterogeneous devices. The system’s in-
teroperability can be improved through cross-technology communication [60].

•Standardization: Standardization of devices is required to fully use digital 
technologies for smart farming applications. Differences in output can occur 
as a result of misinterpretation and changes over time. Device, application, and 
system interoperability concerns can also be overcome by standardization [25].

•Data quality: Data quality, as well as data security, storage, and openness, 
are essential for producing meaningful outcomes. Another impediment to the 
adoption of smart farming technologies is the lack of decentralized data man-
agement systems [9]. Multiple actors’ willingness to exchange farm data is be-
ing harmed as a result of this problem.

•Hardware implementation: It is incredibly difficult to establish a smart agri-
cultural setup in large-scale open areas. This is due to the fact that all hardware, 
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including IoT devices, wireless sensor networks, sensor nodes, machinery, and 
equipment, is directly exposed to harsh environmental conditions such as heavy 
rainfall, extreme temperatures, extreme humidity, high wind speeds, and a vari-
ety of other dangers that can destroy electronic circuits or disrupt their normal 
functionality [61]. A possible answer is to construct a sturdy and lasting casing 
for all of the expensive devices that can withstand real-world conditions [62].

•Adequate power sources: Typically, wireless gadgets used on farms func-
tion for an extended period of time and have a limited battery life. 

Because replacing a battery in the event of a failure is difficult, especially in 
open-air farms where devices are strategically located with limited access [61], a 
proper energy-saving system is required. Low-power sensors and proper commu-
nication management are two viable strategies for reducing energy consumption 
[24, 63]. Other intriguing technologies to eliminate the need for battery renewal by 
recharging batteries using electromagnetic waves include wireless power transfer 
and self-supporting wireless systems. In most agricultural applications, however, 
long-distance wireless charging is required [9]. Another potential alternative is to 
capture ambient energy from rivers, fluid flow, vehicle movement, and the ground 
surface using sensor nodes; however the converted electrical energy is current-
ly restricted, necessitating the need to enhance power conversion efficiency [64].

•Reliability: The dependability of devices, as well as the software applica-
tions that run on them, is critical. This is due to the fact that IoT devices must 
collect and transmit data from which judgments are made utilizing a variety of 
software packages. Unreliable sensing, processing, and transmission can result 
in erroneous monitoring data reports, significant delays, and even data loss, all 
of which can have a negative impact on agricultural system performance [25].

 •Adaptability: Agriculture is a complicated, dynamic, and continuously 
changing environment. As a result, when building a system, it is critical for de-
vices and applications to react proactively with other entities in the face of un-
known and dynamic elements in order to provide the required performance [65].

•Robust wireless architectures: Low-cost, wide-area coverage, enough net-
working flexibility, and high scalability are all advantages of wireless networks 
and communication technologies. However, in a dynamic agriculture environ-
ment, such as temperature swings, the movement of live objects, and the ex-
istence of impediments, dependable wireless connection is a major difficulty. 
For example, multipath propagation effects cause signal strength oscillations, 
resulting in unstable connectivity and insufficient data transmission [66]. These 
elements have an impact on the agricultural system’s performance. As a result, 
robust and fault-tolerant wireless architectures with proper sensor node place-
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ment, antenna height, network topology, and communication protocols are re-
quired, as well as low-maintenance wireless systems [11].

•Interference: Because of the extensive deployment of IoT devices and wire-
less sensor networks, another difficulty is wireless interference and quality of 
service degradation. Effective channel scheduling between heterogeneous sens-
ing devices, cognitive radio-assisted WSNs, and upcoming networking prim-
itives like concurrent transmission [67] can all help to solve these problems. 
Because agriculture equipment are dispersed in indoor greenhouses, outdoor 
farmlands, underground locations, and even aquatic areas, cross-media com-
munication between underground, underwater, and air is also necessary for full 
integration of smart technologies [68].

•Security and privacy: Because smart agricultural systems are dispersed, 
they are vulnerable to cyber-attacks such as eavesdropping, data integrity, de-
nial-of-service assaults, and other sorts of disruptions that could jeopardize the 
system’s privacy, integrity, and availability [69]. With various privacy-preserv-
ing techniques and federated learning approaches, cyber-security is a funda-
mental concern that needs to be addressed in the context of smart farming [44].

•Compatibility: in order to meet the fragmentation and scalability standards, 
the models or software applications developed must be adaptable and able to 
run on any equipment in the agricultural system [13]. 

•Resource optimization: To boost farm profitability, farmers need a resource op-
timization procedure to determine the ideal number of IoT devices and gateways, 
cloud storage size, and volume of transmitted data. Resource optimization is diffi-
cult since farms vary in size and require different types of sensors to assess different 
variables [70]. Second, most farm management systems do not support run-time 
changes to match the demands of individual farmers. To estimate adequate resource 
allocation, complicated mathematical models and algorithms are necessary [32].

•Scalability: Due to technological improvements, the number of gadgets, 
gear, and sensors put on farms is continually expanding. 

Gateways, network applications, and back-end databases should all be de-
pendable and scalable in order to serve these entities [71].

•Human-centered user interfaces: Existing agricultural software and gadgets 
have complicated user interfaces, which are limiting smart farming methods. 
The majority of graphical user interfaces are constructed in such a way that 
only specialists can use them to accomplish agricultural activities. By making 
the user interface more human-centered and providing multimodal feedback, a 
bigger group of individuals will be able to use it to complete various agricul-
tural tasks [35].
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4.13. Socio-economic roadblocks 
•Gap between farmers and researchers: Farmers’ engagement is critical to 

the success of the agriculture industry’s digitization. Agricultural specialists are 
frequently unaware of the concerns that farmers encounter during the agri-food 
production process, which smart technologies could solve [16]. Furthermore, it 
is critical to completely comprehend the nature of problems in order to create 
an appropriate smart solution. 

As a result, bridging the gap between farmers, agricultural professionals, 
and AI researchers is critical.

•Expenses connected with smart systems: the costs associated with adopt-
ing smart technology and systems are a major impediment to the agriculture 
sector’s digitization. These expenses typically include deployment, operation, 
and maintenance. Smart system deployment costs are typically significant since 
they include: I hardware installation, such as autonomous robots and drones, 
WSNs, gateways, and base station infrastructure, and ii) paying trained labour 
to do particular agricultural tasks [72]. Similarly, subscriptions to centralized 
networks and software packages are necessary to support data processing, con-
trol of IoT devices and equipment, and knowledge exchange, which eventually 
raises operating expenses [73]. Even if service providers occasionally provide 
free subscription packages with limited capabilities, storage capacity is limited. 
Periodic maintenance is essential to ensure the proper operation of the smart 
system, which adds to the total costs.

Environmental, ethical, and societal costs may also be connected with the 
adoption of smart devices. Initiatives focusing on cooperative farming are need-
ed to overcome cost-related roadblocks by providing: I support services for 
better cost management and needed investments, and ii) hardware solutions to 
transform conventional equipment into smart farm-ready machinery to reduce 
high initial costs [73].

•Digital division: a lack of awareness of digital technology and their appli-
cations is another problem limiting the digitalization of the agriculture sector. 
The majority of farmers have no understanding what digital technologies are, 
how to install and utilize them, or which technology is appropriate for their farm 
and matches their needs [14]. As a result, farmers must be educated on current 
farming technologies and processes. 

Furthermore, various tactics are required to develop tools that use natural 
language and are easily understood by farmers with low levels of education [74]. 

•Return on investment: In agriculture, like in other industries, the profit 
margin is critical. When it comes to implementing modern technologies, farm-
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ers are concerned about the time it will take to recoup their investment and the 
difficulty in assessing the benefits [12].

•Building faith in the effectiveness of smart technology in agriculture is 
difficult, unlike in other disciplines, because many decisions influence systems 
that involve both living and non-living elements, and the results can be difficult 
to reverse [16]. In addition, the lack of verification of the influence of digital 
tools on farm productivity exacerbates the current difficulties.

•Legal frameworks: different regions and nations have distinct legal frame-
works that influence the deployment of digital technologies in agriculture, par-
ticularly in monitoring and agri-food supply [31]. Similarly, laws governing 
resource allocation (spectrum for wireless devices), data privacy, and security 
differ from country to country [31].

•Connectivity infrastructure: In most developing nations, connectivity in-
frastructure is poor, limiting access to advanced digital technologies that could 
help turn data from disparate sources into useful and actionable insights [10].

4.14. Discussion 
The goal of this study was to describe the new digital technologies that are 

being used in the agricultural industry in order to predict the future trajectories 
of agriculture 4.0. Big data and analytics, wireless sensor networks, cyber-phys-
ical systems, and digital twins are among the technologies that have yet to be 
fully explored in agriculture. This disparity could be due to the fact that install-
ing advanced technologies with more complex processes can be costly, at least 
in the early stages of their acceptance. The agricultural industry’s development 
of these technologies is expected to speed up in the next years. The findings of 
SLR also reveal that IoT is widely used in farms. This is owing to the IoT’s di-
verse capabilities, which include monitoring, tracking, and tracing, agricultural 
machinery, and precision agriculture [21]. One of the key research aims within 
the farm 4.0 techniques can be regarded to be IoT. Nonetheless, when building 
an intelligent agricultural system, only a few researches have examined data 
security and dependability, scalability, and interoperability. The outcomes of 
the study also revealed that the majority of use cases are still in the prototype 
stage. The reason for this could be that most agricultural activities involve live 
subjects, such as animals and plants, or perishable products, and establish-
ing systems for living subjects is more difficult than developing systems for 
non-living human-made systems. Another explanation could be that, due to the 
trans-disciplinary character of agriculture, it is a late adopter of technology. As a 
result, in order to construct intelligent systems, the agricultural community must 
become conversant with all digital technologies. Finally, differences in plant/
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crop species and growth conditions complicate agricultural system digitaliza-
tion [55]. In contrast to indoor farms, the majority of the technologies created 
by SLR are for open-air soil-based farms (soilless and soil-based). This is owing 
to the complicated design and maintenance of indoor farms, particularly soilless 
farms, where the parameters and elements to be maintained are numerous (pH, 
air temperature, humidity, etc.) [5]. However, by incorporating digital technol-
ogy and data-driven computer applications into indoor farms, a more reliable 
control of the process can be attained. Furthermore, SLR reveals that insufficient 
research is undertaken in three of the nine service areas described in section 3 
(soil management, fruit detection and counting, and crop quality management). 
This supports the notion that significant research and development is required 
in some areas to ensure the successful digitization of the agriculture business 
in both developed and developing countries. The agriculture ecosystem’s com-
plexity creates a set of interrelated hurdles that prevent full integration of digital 
technology for agriculture 4.0 implementation. As a result, identifying possible 
bottlenecks is critical in order to devise strategic strategies to overcome them. 
This research aims to figure out what these stumbling barriers are. Following 
the investigation, 21 barriers were found and characterized on both a technical 
and socioeconomic level. These impediments are addressed in section 5, which 
outlines what needs to be done on a bigger scale to digitize the agricultural 
economy. However, it is still unknown how much removing or mitigating these 
hurdles aids in the successful integration of digital technologies. 

4.16. Added value of agricultural digitization 
Several benefits that can inspire framers and other actors to assist agriculture 

industry digitization have been discovered and outlined based on analysis. The 
benefits described here have the potential to increase farm productivity and im-
prove product quality, but they should not be viewed as a cure for the problems 
that come with smart agriculture [73]. 

•Improved agility: Farm operations can now be more agile thanks to digital 
technologies. Farmers and agricultural professionals can quickly respond to 
any anticipated changes in environmental and water conditions using real-time 
surveillance and forecasting technologies to save crops [72].

•Green process: By lowering the use of in-field fuel, nitrogen fertilizers, 
pesticides, and herbicides, digital technologies make farming more ecologically 
friendly and climate-resilient [75].

•Resource efficiency: By increasing the quantity and quality of agricultural 
output while reducing the use of water, energy, fertilizers, and pesticides, digital 
platforms can improve resource efficiency [3]. 
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•Time and cost savings: By automating various tasks such as harvesting, sow-
ing, or irrigation, managing the application of fertilizers or pesticides, and sched-
uling irrigation, digital technologies provide significant time and cost savings [76].

•Asset management: digital technologies enable real-time observation of 
farm holdings and equipment, allowing for theft prevention, component re-
placement, and routine maintenance [10].

•Product safety: By eliminating fraud [17, 18] linked to adulteration, coun-
terfeiting, and artificial enhancement, digital technologies maintain appropriate 
farm output and ensure a safe and nutritious supply of agri-food products [69].

4.17. Considerations and future prospects 
The agricultural industry would see major benefits as a result of the planned 

measures. However, the impediments identified in section 5 must be solved first 
in order to make things sustainable for small and medium-scale growers. Some 
of the above hurdles can be mitigated by awareness campaigns emphasizing the 
importance of smart agriculture at every level of the agricultural value chain and 
encouraging novel techniques (such as gamification) to encourage stakeholders 
to take an active role in the digital transformation [9]. Initiatives at the federal 
level, grants and endowments, public-private collaborations, data transparency, 
and regional research efforts can all help overcome potential hurdles. Finally, 
when constructing a smart agriculture system, a roadmap can be used, starting 
with a basic architecture with few components and simpler functionality and 
gradually adding components and functionality to develop a sophisticated sys-
tem with full digitization potential [21]. These issues can pave the road for ag-
riculture 4.0’s successful adoption. The use of explainable artificial intelligence 
to monitor crop development, estimate crop biomass, evaluate crop health, and 
control pests and diseases is one of the future prospects of digital technologies 
in smart agriculture. Explainable AI eliminates the old black-box approach of 
machine learning and allows for a better understanding of the reasoning behind 
any given decision [15]. The use of common semantics and ontologies to de-
scribe big data, as well as the adoption of open standards, has the potential to 
accelerate research and development in the field of smart farming. Similarly, 
5G technology must be thoroughly investigated in order to enable improved 
connectivity and live streaming of crop data [6]. By executing precise crop in-
spections remotely, 5G technology will reduce internet costs and enhance the 
entire user experience of farm management and food safety [77]. It would also 
help to close the gap between stakeholders by keeping them informed about 
crop availability. Finally, blockchain can be used in conjunction with IoT and 
other technologies to address data privacy and security concerns [78]. 
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4.18. Transition to Agriculture 5.0 
The agriculture sector has traditionally had a breakthrough during industri-

al revolutions. Agriculture 4.0 offers significant potential to offset rising food 
demands and prepare for the future by reinforcing agricultural systems with 
WSN, IoT, AI, and other technologies, as formally mentioned in preceding 
sections. While agricultural 4.0 is still being implemented, agriculture 5.0 is 
already being discussed. 

Agriculture 5.0 builds on agriculture 4.0 by incorporating industry 5.0 prin-
ciples to provide healthy, affordable food while also ensuring that the environ-
ments on which life depends are not degraded [79]. Industry 4.0 focuses less 
on the original principles of social fairness and sustainability and more on dig-
italization and AI-driven technologies for increasing efficiency and flexibility, 
the European Commission formally called for the Fifth Industrial Revolution 
(industry 5.0) in 2021 [80]. Industry 5.0 adds to and expands on the industry 4.0 
concepts by emphasizing human-centricity, sustainability, and resiliency [81]. 
It entails improving human-machine collaboration, decreasing environmental 
effect through the circular economy, and designing systems with a high degree 
of robustness to reach an ideal balance of efficiency and productivity. Among 
the enabling technologies of industry are cobots (collaborative robots), smart 
materials with embedded bio-inspired sensors, digital twins, AI, energy efficient 
and secure data management, renewable energy sources, and others 5.0[80].

Farm production efficiency and crop quality can be improved in agriculture 
5.0 settings by delegating repetitive and boring activities to machines and those 
that need critical thinking to humans. For this reason, agricultural cyber physical 
cognitive systems (CPCS) that observe/study the environment and conduct ap-
propriate actions, comparable to those established for the manufacturing sector, 
should be developed. This might include collaborative farm robots that work in 
the fields to aid crop growers with time-consuming operations like seed sowing 
and harvesting. Similarly, digital twins in agriculture 5.0 can add substantial value 
by recognizing technical difficulties in agricultural systems and resolving them 
more quickly, detecting crop illnesses, and producing more accurate crop output 
estimates. This demonstrates that agriculture 5.0 has the potential to pave the way 
for climate-smart, sustainable, and resilient agriculture, but it is still in its infancy. 

5. Conclusions 
Concerns about global food security have heightened the demand for 

next-generation industrial farms and agricultural intensive production systems. 
Digital technologies, such as those given by the Industry 4.0 programme, are at 
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the vanguard of this modern agricultural period, providing a wide range of in-
novative solutions. Disruptive technologies are being integrated into traditional 
agriculture systems by scientists and researchers in order to boost crop yields, 
cut costs, reduce waste, and sustain process inputs. This report includes an SLR 
that discusses the current state of various technologies in the agriculture sector. 
Several findings are drawn, including the fact that big data and analytics inte-
gration, wireless sensor networks, cyber-physical systems, and digital twins in 
agriculture are still in their infancy, with the majority of use cases still in the 
prototype stage. Similarly, 21 technological and socioeconomic impediments 
are found and categorized. These impediments must be identified and addressed 
if the agriculture industry is to be digitalized. The report also identifies and 
presents the additional value of digital technology in the agriculture industry. 
Overall, this research contributes to the ongoing research on agricultural 4.0. 
The review’s principal restriction is twofold: first, only three online reposito-
ries (Scopus, IEEE, and Science Direct) are considered for literature searches, 
and second, new keywords and synonyms may return more papers. The main 
conclusions are highly unlikely to alter in either scenario. Additional research 
databases and areas can be considered for future study in order to provide a 
complete overview of the agriculture industry in terms of digitization. In addi-
tion, papers focusing on agriculture 5.0 in general will be featured.
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