Siberian Journal of Life Sciences and Agriculture, Tom 15, Ne2, 2023 303

HAYYHBIE Ob30Pbl U COOBILEHHUA

SCIENTIFIC REVIEWS AND REPORTS

DOI: 10.12731/2658-6649-2023-15-2-303-336 @@@@
BY NC ND

UDC 633.11:632.4.01/.08

Scientific review

IMPACTS OF CLIMATE CHANGE,
FORMS, AND EXCESS OF NITROGEN FERTILIZERS
ON THE DEVELOPMENT OF WHEAT
FUNGAL DISEASES

S. Diakite, E.N. Pakina, A. Behzad, M. Zargar, E.S. Saquee,
E.V. Kalabashkina, V.A. Tsymbalova, T.S. Astarkhanova

Background. Global climate change and excessive nitrogen application has
become a significant issue and inevitably threatens sustainable wheat production,
not only with direct negative effects on crop growth but also with profound impacts
on biology and pest and disease management.

Purpose. This review addresses the current challenges, namely the negative
effects of climate change and the forms and excess of nitrogen-rich fertilizers on
the development of fungal diseases in wheat, as well as management strategies.

Materials and methods. To achieve the stated objective of the study, the scientific
literature published during the last 20 years on the impacts of climate change and
the forms and excesses of nitrogen fertilizers on the development of fungal diseases
and on the yield of wheat were reviewed.

Results. Thus, in mitigating these challenges, it is necessary to optimize the dose
of nitrogen fertilizers, apply nitrogen in the form of nitrate, ammonium sulphate,
ammonium nitrate, and coated urea fertilizers, to use silicate fertilizers such as
calcium, magnesium, and potassium silicate, and to perform a long rotation of
wheat through perennial legumes and leguminous crops, as well as to develop,
through genome editing, varieties with high yield potential, resistant to biotic and
abiotic stresses, and of good end-use quality, or plant new cereals that have needs

for heat and a longer reproductive growth period.
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Conclusion. To develop an effective agricultural management strategy, future
research should be based on the study of the interactions among crops, pests, pathogens
and farming system under climate change, taking into account all parameters such
as temperature increase and CO2, extreme precipitation, etc. A sufficient number of
results must be published to be able to draw meaningful conclusions.
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O030pHas cTaTbs

BJIMAHUE UBMEHEHUSA KIIMMATA, ®OPMbI
U U3BBITKA A3OTHBIX YIOBPEHUI HA PABBUTUE
IT'PUBKOBBIX 3ABOJIEBAHUH IMIINEHUIIBI

C. luaxume, E.H. Ilakuna, A. Bex3ao, M. 3apzap, ®@.C. Caku,
E.B. Kanabawkuna, B.A. Hvimbanosa, T.C. Acmapxanosa

Obocnosanue. [obanvioe usmenenue KiumMama u upeamepHoe npumenenue
aszoma cmanu cepbe3noll npooaemMoll U Heu30eNHCHO YepoACarom yCmoudugomy npo-
U3600CMBY NUIEHUYLL HEe MONLKO ¢ NPAMbIM HE2AMUGHbIM 6030eliCmeuemM Ha pocm
KVIbIYP, HO U C CePbe3HbIM 8030elicmauem Ha OUon02uro u 60pbby ¢ epedumensimu
u boneznsAMU.

Lens. B omom 0b30pe paccmampugaiomcest 08e mexywjue npoonemvl, a UMeHHO
He2amugHoe GIUAHUE USMEHEHUs KAUMAMA U POPMbl U U30LIMKA 602aAMbIX A30MOM
VO0bpenull na pazgumiue epubKogulX 3a001e6aHUll NUEHUYbL, d MAKIICe cmpamezuu
YNpagneHus.

Mamepuanot u memoosl. [l 00CmudiceHus 3aa6/1eHHOU Yelu UCCIe008aHUS
0110 nposedeno uzyuenue onyoIUKOBaAHHOU HAYYHOU TUMepamypbl 3a Nocieonue
20 nem 0 eruUAHUY USMEHEHUs KIUMAMA, opmbl U U3OBIMKA A30MHbIX YOOOPEeHUll
Ha pazeumue epudKosbIX Ooae3Hell U HA YPOUCAUHOCNb NUIEHUYDL.

Pesynomamot. Taxum 06pasom, Ois peuterust Smux meKyuwux npoonem Heooxo-
OUMO ONMUMUUPOBAMb 003Y A30MHBIX YOOOPEHU, BHOCUMb A30M & 8UOE CeNUMPUL,
cynbama amMMOHUS, AMMUAYUHOL CeUmMPbL U KApOAMUOHBIX YOOOpeHuUll 6 000I0UKe,
UCNONL308AMYb CUTUKATHBIE YOOOPEHUs, MaKue KaK CUTUKAM KaTbyus, MAeHUs u
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KAusi, @ Makoice 0Cywecmensimy ONUmenbHblll ce60000pOon NULEHUYbL ¢ MHO2O0LEeN -
HUMU 60O0BbLIMU MPABAMU U 3ePHOO0D0BIMU KYIbIypamu. Bvieecmu nymem pedax-
MUPOBAHUS 2EHOMA COPMA C 8bICOKUM NOMEHYUALOM YPOICAUHOCIU, YCIMOUYUBbIE
K OUOMU4eckuM U AbUOMU4ecKUM Cmpeccam u Xopouie2o Kauecmeda 0Jis KOHeYHO20
UCNONL30BAHUS, UNIU 6030€IbIEAMNb HOBbIE 3ePHOGbIE, KOMOPble HYAHCOAIOMCSL 6 me-
nie u umerom 6onee ONUMenbHbIl NEPUOO PenpoOOYKIMUBHO20 POCHA.

3aknwouenue. Ymodwi paspadbomams QP hexmusHyro cmpameuio ynpagieHus
CeNbCKOXO3AUCMBEHHBIM NPOUZBOOCEOM, OYOyUUe UCCTIe008aHUS OONHCHBL ObIMb
OCHOBAHbI HA U3YYEHUU B3AUMOOCTICBUS MEICOY CENbCKOXO3ANUCMEEHHBIMU KYIbINY-
pamu, pedumensimu, namo2eHamu U CUCIEMOU 3eMaAe0eNUs 8 YCI0UAX USMEHEHUs
KAUMAma, npUHUMAsl 60 BHUMAHUE 8Ce NAPAMEMPbl, MaKue KaK nogvluleHue memne-
pamypsl u CO2, obunue ocaokos u m. 0. Heobxooumo onybnuxoeams docmamoyroe
KOIUYECmE0 pe3yivbmamos, Ynmoovl MOANCHO ObLIO COeNaAMb OCMbICIEHHbIE 8bIBOObI.

Kniouesvie cnosa: npoonemvi; epubrosvie 3abonesanus,; azomuoe yooopenue;
nuienuya; usMeHeHue Kiumama

Jna yumuposanus. Juaxume C., Ilaxuna E.H., bexzao A., 3apeap M., Caxu
@.C., Kanabawruna E.B., [[oimbanosa B.A., Acmapxanosa T.C. Buusnue uszme-
HeHUs Kaumama, Gopm u uzdblmKa a30musix y0oOpeHull Ha pazeumue epUOHbIX
bonesneti nuenuywt // Siberian Journal of Life Sciences and Agriculture. 2023. T. 15,
Ne2. C. 303-336. DOI: 10.12731/2658-6649-2023-15-2-303-336

Introduction

Wheat is the most widely grown crop in the world, grown on 217 million
hectares per year with a total world production exceeding 700 million tons, due
to many qualities favorable for human nutrition. About 44% of the total world
wheat production is produced in Asia, 34% in Europe, 15% in America, and
3.4-3.5% in Oceania and Africa [19]. China, India, and Russia are the three larg-
est producers, accounting for around 41% of total global wheat production [19].

Despite the relatively large acreage of this crop, wheat production remains
insufficient with production potential and growing demand, partly due to pop-
ulation growth. This is mainly due to the prevalence of several fungal diseases
which are explosive, such as septoria, blotch, Fusarium wilt, Rhynchosporium
wilt, powdery mildew, and rust, which largely contribute to the substantial loss
of both yield, up to 15 to 20%, even more than 60% under conditions favorable
to the development of these various pathogens, and grain quality by the presence
of Fusarium mycotoxins [15, 32, 42, 48]. The development of these diseases is
favored by the cultivation methods practiced, such as intensive monoculture,
debris and crop residues, as well as sensitive varieties. This is further accentu-
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ated by climate change, characterized by increased temperatures and droughts
or sometimes flooding, and combined with pests and other diseases, making
agricultural production less predictable [54].

The consequences of climate change will undoubtedly affect not only the
spread of harmful and beneficial micro-organisms, their bio-ecological prop-
erties, and relationships with plants but also the existing management options
(effectiveness and duration of pesticides) and the biological factors of the host
plant [27, 31, 37]. Thus, in plots inoculated with Fusarium culmorum, yield
losses were around 15% under wet conditions and 25% under drought condi-
tions in Tunisia (Table) [7]. In addition, contrary to oidium, high temperatures
favor the growth of uredomycelium of Puccinia graminis and a temperature of
up to 25 °C-30°C stimulates the production of spores by Ug99 of wheat, and
therefore, a warming climate only reduces it in tropical regions [43]. Elevated
CO, levels not only increased the susceptibility of wheat varieties but also in-
creased the virulence of Zymoseptoria tritici and Fusarium graminearum, re-
sulting in more severe disease overall [56]. In the last 10 years, due to climate
change, Fusarium graminearum, Pyrenophora tritici-repentis, Septoria tritici,
and other pathogens have appeared recently in many wheat-growing regions
in Russia [31].

Extreme temperature swings during particular developmental phases, such
as the blooming stage and the grain filling phase, have an impact on the weight
and size of wheat grains at the end of the season. Thus, according to Nuttal et
al. (2012), wheat production decreased by 13% and most grains were sterile at
36 + 2°C during flowering [40]. In addition, according to Asseng et al. (2015),
for every 1°C increase in temperature, global wheat production is projected to
decrease by 6% and become more spatially and temporally variable [2]. Simi-
larly, Rettie et al. (2022) found that a 6°C increase in temperature reduced wheat
grain yield by 47-57% in Ethiopia and 28-37% in Europe [46].

Nitrogen remains the determining element for the production of cereals,
and its efficient use is decisive for the improvement of production in quan-
tity and quality. However, the nature, dose, and telluric phytosanitary aspect
of wheat, as well as the form and climatic condition in which nitrogen must
be applied, is a significant challenge in wheat production [16, 17, 18, 32].
Thus, high doses of nitrogen increase the severity of stripe rust [14], stripe
rust [32], powdery mildew and septoria leaf spot [7, 32], and Fusarium wilt
[16, 18]. In three greenhouses with different environments, the use of nitro-
gen at a dose of 24gL"! favored the incidence and development of collar rot
induced by Fusarium culmorum and significantly reduced the yield of durum
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wheat by 76 % relative to the 1.5gL"" dose [18]. The application of nitrogen at
a dose of 24 g L-1 induced an increase in severity of 127%, 179% and 280%
respectively for durum wheat, soft wheat and barley (Table) [18]. Similarly,
unlike urea-based fertilizers, the use of ammonium nitrate significantly con-
trolled Fusarium culmorum [16, 18]. Information on these challenges will
be of great importance for building integrated science-based plant protection
systems and improving soil fertility [31]. For this purpose, this review was
interested in studying the impacts of climate change and the forms and excess
of nitrogen-rich fertilizers on the development of wheat fungal diseases and
their management strategies.

Table.
Impacts of climate change and excess dose of nitrogen fertilizer
on the development of wheat fungal diseases

Pathogens Factors Quantity Impacts Lt(i)gr?_ Country | Sources
Dryer season | 294 mm | Yield losses (25%) | Green- Chekali
Wetter sea- . house | Tunisia | etal.,
o son 524 mm | Yield losses (15%) test 2013
T culmorum -
Yield losses (76%) | Green- M Eddine
Urea 24 g L-1 The severity of the house (();I'OOC- etal.,
crown rot (179%) test 2022
Warmer Europe
climate Increase in the ured- AsiIa) ?
P. graminis f. Wlth. lower In1ospore emitting Field | Amer- | Prank et
sp. tritici relative hu- potential of an in- test | icaand |al., 2019
P midity and fected field as global South ”
enhanced average ~40% Africa
turbulence
B. graminis The severity on av-
Josp. tritici 90-270 | erage (77.0-154.7%) | Field China | Lvoet
P strifformis f. | (oo oo kg-ha ™' | The severity on ave- | test al,, 2021
sp. tritici 08 rage (37.8-350.2%)
fertilizer
B. graminis 13132755- Disease severity Field | . | zhuet
fosp. tritici kg~hﬁl'2 index (92.5-217.0%) | test al., 2017
Nitrogen 50- Stimulation and am- Ficld Ben
Z. tritici fe I‘tiligZ or 150kg. | plification of disease test Tunisia | Omrane,
ha! incidence 2020
The highest path-

B. oraminis Low temper- | 18-22°C | ogen quantity was | Single Blandi-
f:qg itici atures and and450 | 40 pg of B.graminis | phy- Ttaly | noetal.,
P ambient CO, ppm fisp. tritici/g fresh | totrons 2020

weight of leaves
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Climate change’s impact on the emergence

and control of wheat fungal diseases

Global climate change has recently become a significant issue and inevitably
threatens sustainable wheat production, not only with direct negative effects on
crop growth but also with profound impacts on biology and pest management.
According to Asseng et al. (2015), for every 1°C increase in temperature, glob-
al wheat production is projected to decrease by 6% and become more spatially
and temporally variable [2]. Similarly, the yield loss for each 1°C increase in
global average temperature is about 6.0% for wheat, 3.2% for rice, 7.4% for
maize, and 3.1% for soy [62]. A 1% increase in average growing season tem-
perature could result in a 0.109% loss in winter wheat yield per unit area, while
a 1% increase in growing season precipitation could result in a 0.109% loss in
winter wheat yield per unit area of the latter by 0.186% when the other factors
remain constant according to the Cobb-Douglas production function [23]. In
addition, under normal conditions for the 2014-2015 campaign, the economic
losses generally amounted to 344 and 243 million dollars, respectively, for the
national production of durum wheat (2.4 Mt at 266 dollars/ton) and common
wheat (5.6 Mt at 221 dollars/ton). But for a dry year like the 2015-2016 agri-
cultural campaign, losses due to drought reached 317 and 718 million dollars,
respectively, for durum wheat (0.9 Mt at 211 dollars/ton) and common wheat
(1.9 Mt at 194 dollars/ton), and this compared to a normal year [20, 34].

An increase in CO, significantly reduced the total fecundity of cherry oat
aphids to 22% and wheat N content to 39%, contrary to an increase in nitrogen,
which would improve this [38]. Since aphids are vectors of viruses in wheat,
any factor favoring their development may simultaneously increase the ap-
pearance and spread of viruses in the crop. The climate change scenarios, i.e.
a temperature variation of +0.5 to 2.5°C and precipitation of -5 to -25%, sig-
nificantly reduced the grain yield of wheat in the provinces of Mazandaran and
Khuzestan but increased it in East Azerbaijan province [39]. In addition, the
application of nitrogen fertilizer could not compensate for grain yield losses
related to climate change [38, 39]. Here we can suggest that a variation in CO,,
temperature, and precipitation reduces the effectiveness of other wheat devel-
opment factors, such as nitrogen.

Climate change manifests itself in frequent dry years and abrupt changes
in weather patterns during the season. In general, the biology of pathogens and
pests (survival rates, spread, infection of plants, development of the disease,
reproduction of the pathogen, vectors, reserve plants, antagonists, and compet-
itors of the pathogen), including existing management options (effectiveness
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and duration of pesticides) and host plant biological factors, is more or less di-
rectly influenced by temperature, rainfall, humidity, light quality and quantity,
and wind [27, 31, 37]. However, a change in temperature and other climatic
conditions, such as a change in precipitation, can lead to various changes re-
lated to wheat pathogens, which generally include range expansion, seasonal
phenology, virulence, and population dynamics [3, 37, 57]. This may ultimately
result in a change in the incidence and severity of disease at a given location
and should be offset by a corresponding increase in treatment efforts seen by
changes in expenditure.

Preventing or controlling wheat pests and diseases in the context of climate
change is a big challenge because wheat is inevitably infected by a large num-
ber of pathogens with different development factors and which are constantly
increasing each year. For example, heavy rainfall and a dew phase throughout
the vegetative growth period of wheat in the spring favor the development of
Zymoseptoria tritici, unlike Fusarium species, which only require rainfall of
about 2-3 mm during flowering, and Puccinia triticina only needs night dew
[47]. Similarly, Pythium species greatly prefer moisture; Bipolaris sorokini-
ana—hot, dry soils; Tilletia laevis—cold, moist conditions; Rhizoctonia ce-
realis—dry, sandy soils; cold and high humidity [3]. In short, each change in
climatic conditions favors the development of organisms harmful to crops. To
predict the potential development of a particular disease under new environ-
mental conditions, it is necessary to pay close attention to a detailed study of the
temperature requirements for each stage of the pathogen. This is also important
because different scenarios of global warming are expected [31].

Several studies have sought to assess the effects of several factors—in-
creased temperatures, CO,, and changes in water or humidity conditions—
on the incidence and severity of phytopathology, with study methods ranging
from simple equations to complex models such as DSSAT (America), APSIM
(Australia), and CCSODS (China) [23, 27]. Thus, by applying an earth system
model, Prank et al. (2019) showed that a warmer climate with lower relative
humidity and increased turbulence may lead to an increased urediospore emis-
sion potential of Puccinia graminis f. sp. tritici at 40% in the field of infected
wheat (Table) [43]. The infection increased up to two times after inoculation
with Puccinia striiformis f. sp. tritici from wheat plants grown at 12°C during
the dark period and at 18°C or 25°C during the light period and transferred to
the lower daytime temperature. Similarly, increased resistance when plants ex-
perienced increased temperatures was observed in seedlings and manifested as
reduced hyphal colonization compared to seedlings maintained at cooler day-
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time temperatures. This temperature sensitivity is genotype-dependent in wheat
seedlings [11]. The most favorable conditions for the progression of powdery
mildew on wheat were low temperatures ranging from 18-22°C and ambient
CO, (450 ppm) when healthy plants inoculated with Blumeria graminis f. sp.
tritici were exposed to phytotrons. High temperatures ranging from 26 to 30°C
inhibited the growth of pathogens, while high CO, content did not stimulate the
development of powdery mildew but impaired plant vitality [36]. On the other
hand, an increase in CO, levels favored the development of powdery mildew,
leaf rust, and stem rust in susceptible wheat varieties [8]. For all wheat cultivars
grown at high CO, in the field, grain yield increased (+16%), protein content
decreased (-7%), accompanied by a reduction in dough strength, and the de-
oxynivalenol content increased significantly in ordinary bread-making cultivars,
although the sign of Fusarium head blight was not noticed [9].

With the current effects of climate change, it is expected that new pests
and diseases will appear, causing a change in the frequency of pathogen iso-
lation. As evidenced by recent outbreaks of stem rust strain Ug99 in Uganda,
Ethiopia, South Africa, Iran, Russia, Germany, the United Kingdom, Sweden,
Denmark, and Sicily [54], and stripe rust in Central and West Asia and North
Africa [43]. In addition, in recent years with increasing temperatures and dri-
er conditions, the frequency of Fusarium culmorum isolation has decreased
and that of Fusarium graminearum has increased in the UK, the Netherlands,
northern Germany, and northern Poland. On the other hand, that of Fusarium
graminearum is decreasing in several European countries and that of Fusarium
poae is increasing significantly [37]. Also, in recent years, in the conditions of
the Republic of Udmurtia, the increase in snow mold and sclerotinia in winter
crops is associated with global warming and increased precipitation in autumn
and winter [55]. However, when the ambient temperature changes, a change
in species dominance can occur [31]. In 2017, the significantly below-average
rainfall and above-average temperatures observed in January 2018 caused wa-
ter stress and favored the invasion of Fall Armyworms, which were detected
in all countries of Southern Africa except Lesotho and Mauritius [20]. Strong
winds due to climate change were shown to transport stem rust spores within 3
days between North America and Europe, reaching Australia from South Africa,
Africa from South America, and South America from New Zealand [43]. How-
ever, long-term changes in disease onset must inevitably lead to adjustments in
future breeding strategies for resistance, where the stability and durability of
disease resistance under heat and water stress will be important for the future.
In general, it would be important to focus on resistance genes and quantitative
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trait loci that are not temperature-sensitive [37].

Indirect effects are mediated by host plant physiology and/or climate
change-induced crop management adaptations, such as the introduction of ir-
rigation, the abolition of soil turning operations to achieve conservation ag-
riculture, and shifting sowing dates, for example, due to accelerated crop
development [37]. At excessive temperatures, winter wheat tends to prolifer-
ate, which weakens its resistance to cold and also shortens its growing season,
causing a reduction in grain weight and affecting grain quality. According to
Tuktarova (2019), in the Republic of Udmurtia in Russia, the sowing time of
winter crops should be postponed to a later period (by 7-10 days) compared to
the recommendations given in 1970—1980 [55]. Similarly, in Iran, late sowing
dates in November, December, and January improved wheat yield [39].

Effects of nitrogen fertilizer forms and excess on

wheat fungal diseases

The influence of fertilizers extended not only to cultivated plants but also
to the defeat of their diseases and the environment. Since the 1990s, several
studies have shown that excessive nitrogen application can have a direct impact
on stripe rust and powdery mildew infection and disease severity due to an in-
crease in the density of the canopy, which provides a favorable microclimate for
the development and propagation of pathogenic fungi, and also an increase in
the nitrogen content of the host tissue by acting as a substrate for the growth of
pathogens [14, 26, 32]. In addition, various forms of N can induce changes in
physiological or biochemical processes, such as nutrient uptake, photosynthet-
ic, respiratory and enzymatic activity, osmoregulation, and signaling pathways,
which may be responsible for these tolerance mechanisms or the persistence of
the host plant, thus influencing crop yield [25, 26].

Thus, unlike nitrate (NO,"), a low (2 mmol/L) or high (10 mmol/L) N rate
in the form of ammonium (NH,") reduced wheat biomass by 54% or 85%, re-
spectively [25]. Ammonium also significantly reduced the content of K*, an
important osmotic agent, which would have a particular effect on the water
status of wheat plants [25]. Indeed, wheat, like sugar beets, beans, tobacco, and
canola, grows preferentially on NO, nutrition, while rice, pine, and larch grow
preferentially on NH," nutrition [25]. Ghafoor et al. (2021) also showed that
coated fertilizers improved wheat growth and development, physiology, yield,
and nitrogen use efficiencies [24]. Thus, compared to monotypic urea, urea
coated with bioactive sulfur with nitrogen at 130 kg/ha significantly increased:
the chlorophyll content by 55.0 (unit value), the net rate of leaf photosynthesis
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(12.51mol CO, m-? s-'), and leaf area index (5.67); partial factor productivity
(43.85 Kg grain Kg- 1N provided), nitrogen harvest index (64.70%), and partial
nutrient balance (1.41 kg grain N content Kg-1 N provided); maximum total
dry matter 14402 (kg/ha); 1000 grain weight (33.66g), number of grains per
ear (53.67), grain yield (4457 kg/ha) and harvest index (34.29%) [24]. In addi-
tion, by improving nitrogen uptake by plants (22.17%), coated urea fertilizers
inhibited nitrification and ammonia volatilization processes [24]. These results
agree with those of Shivay et al. (2016) [S1].

Lyu et al. (2022) also showed foliar applications of urea and, in particular, of
NO, increased the filling of wheat grain in N compared to those of NH,". This
increase was related to the remobilization of N by NO," and urea from the source
organs to the grain. Indeed, NO,” and urea at 20-28 days after anthesis up-regu-
lated genes control gluten protein synthesis and disulfide bonds, contributing to
increased grain protein content and quality [33]. In addition, cover fertilization
based on urea applied at a dose of 24gL" at the tillering and bolting stages signifi-
cantly increased the severity of the disease induced by Fusarium culmorum under
greenhouse conditions, with a significant reduction in the dry biomass of durum
wheat plants compared to the other forms tested, in particular ammonium sulphate
and ammonium nitrate [ 16]. Moreover, the urea form supported the growth, spor-
ulation, and pathogenicity of Fusarium culmorum, especially at a temperature of
20-25°C, and its use at a dose of 24gL"! biased varietal resistance [17].

Increased N levels increased the severity of stripe rust (Puccinia striiformis
1+ sp. tritici) of wheat during grain filling, with a tendency to lower yields. The
effects of stripe rust on N yield are most likely associated with reduced N uptake
during grain filling [14]. Blumeria graminis f-sp. tritici increased nitrogen content
from 6.6% to 12.5%, nitrogen accumulation from 1.4% to 6.9%, and nitrogen al-
location rate in intercropped wheat leaves from 9.0% to 15.5% at the maximum
infection stage [63]. Similarly, Blumeria graminis f.sp. tritici inhibited the activ-
ity of glutamine synthetase and glutamate synthase, which play a colossal role in
plant nitrogen metabolism, as well as the expression of glutamine synthetase in
susceptible wheat (Xi’nong 979), which caused inhibition of nitrogen metabolism
in grains 20-30 days after anthesis [16]. Thus, a study of the influence of three
cropping regimes (wheat monoculture, faba bean monoculture, and wheat/bean
intercropping) and four nitrogen levels [NO (0 kg/ha), N1 (90 kg/ha), N2 (180
kg/ha), and N3 (270 kg/ha)] showed that over two consecutive planting seasons,
the severity of wheat powdery mildew and stripe rust increased sharply as higher
amounts of nitrogen were applied. For the two planting seasons, powdery mil-
dew increased on average by 77.0—-134.1 and 109.4-154.7%, and stripe rust by
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37.8-350.2 and 74.4-287.8%, respectively. The incidence and disease index of
wheat powdery mildew and stripe rust were highest at the N3 level, followed by
N2, N1, and NO [32]. Regardless of the monocropping or intercropping regime,
N application tended to increase the occurrence and severity of powdery mildew
and wheat stripe rust, which had the highest incidence and disease index raised to
the N3 level (Table) [32]. These results are similar to those of Zhu et al. (2017).
With increasing nitrogen application of N1 (112.5 kg hm?), N2 (225 kg hm™), and
N3 (337.5 kg hm?), the incidence of wheat powdery mildew disease increased
on average from 39.6% to 55.6% and the disease severity index from 92.5% to
217.0%. These indices were higher in monoculture than in the intercropping of
wheat and faba beans [63]. Thus, the nitrogen level not only influenced discase
occurrence but also decreased the relative efficiency of the intercropping system.
The severity of powdery mildew and septoria leaf spot increased with yearly N
application, especially early N application [41]. Nitrogen applied earlier resulted
in a higher demand for disease control [41]. The highest level of septoria severity
in four varieties of durum wheat was recorded for the 150 kg/ha dose, followed
by the two doses of 100 and 50 kg/ha. As a result, the addition of nitrogen fertil-
izer stimulates and amplifies the incidence of this disease. In addition, it has also
been observed that direct seeding, being responsible for the preservation of the
soil microflora and the sources of inoculum of septoria wilt, is also the main rea-
son for the increase in the disease incidence and severity paired with high doses
of nitrogen (150 kg/ha) [7].

Rempelos et al. (2018) suggest that the application of NPK mineral fertil-
izers reduces the content of phenolic acid and flavonoids in the leaf tissues of
wheat and increases the susceptibility of wheat to lodging and powdery mil-
dew. Unlike herbicides, fungicides and growth regulators ensure the reduction
of lodging and leaf diseases without affecting the latter [45]. Fertilizer at the
dose of N30P30K30 without the other test factors induced an increase in the
spread of root rot by an average of 2.7% during the emergence phase of wheat
caused by Alternaria sp., Bipolaris sp., and Fusarium sp. [44]. Rogozhnikova
et al. (2016) also reported that the application of mineral and new organomin-
eral fertilizers based on chicken manure at the same time reduced the damage
caused by root rot and helminthosporiosis on spring barley and had a tendency
to increase the development of powdery mildew and leaf rust. A stronger grain
infection by fungi of the genera Alternaria and Fusarium was noticed [47].
This shows that the reasoning for nitrogen fertilization for cereals should take
into consideration the nature and the dose to be applied as well as the telluric
phytosanitary aspect of the crops.
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This problem is more complex in the barley chain than in wheat because it
concerns not only diseases but also the quality of malted barley. In malting bar-
ley, the starch content is paramount, combined with good phosphorus-potassium
nutrition. Increasing nitrogen nutrition reduces its accumulation. Studies have
shown that a change in seed quality following an increase in fertilizer concentra-
tion decreases the purpose of barley use. The use of higher doses (up to 90 kg/
ha) contributed to the increase in yield, maximized the crude protein content of
the grain, and reduced the starch and extract content. This grain is not suitable
for mashing in terms of protein content but can be used for livestock needs [22].

Wheat agricultural production management strategy

Good control practices include adjusting sowing dates, optimizing sowing
rate, improving sowing methods and sowing depth, developing quality seeds
and rapidly multiplying seeds of new wheat varieties, treating seeds with com-
bined preparations containing several active substances that solve complex seed
protection problems, developing varieties with high yield potential and resis-
tance to biotic and abiotic stresses and with good end-use quality [18, 27, 39].
Yet, under natural conditions, temperatures are constantly changing, and the
effect of this on resistance requires further study so that planting strategies
can be provided promptly to avoid or mitigate the negative impacts of climate
change [23]. In general, it would be important to focus on the transfer of resis-
tance genes or quantitative trait loci not sensitive to temperature or to plant new
cereals that have higher heat requirements and a longer reproductive growth
period [23, 37].

Thus, the grain yield losses of the Mexicali cultivar of durum wheat in Al-
geria were -37.5%, -35%, and -7% with early sowing on September 15, Oc-
tober 15, and November 15, respectively. On the other hand, late sowing on
November 30 and December 15 increased grain yields by +13% and +27%,
respectively [30]. Early sowing in mid-September and October will result in
improved wheat yields as it allows wheat plants to benefit from increased rain-
fall throughout the fall season in 2035-2064. This early sowing will ensure
good vegetative development and allow flowering and filling of wheat grains
before the spring warming period [30]. In Morocco, early sowing (November
1, 2011 and November 16, 2011) of wheat leads to higher yields compared to
late sowing (date of observation: December 1, 2011) of 7.40 to 5.32 t/ha [6]. In
addition, a considerable reduction of more than 40% of applied irrigation water
can be obtained by optimizing sowing dates in the semi-arid region of Haouz
(Morocco) [6]. However, the best sowing dates depend largely on weather con-
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ditions and farming regions. The optimal conditions for growing winter wheat
in the experiment in the Ulyanovsk region of Russia, on average over 6 years,
were formed during sowing from August 30 to September 10 [49]. The highest
grain yield (4.8... 5.1 t/ha) of the Marathon variety was noted for bare fallow,
for peas it was 1.3... 1.4 times lower (3.7... 3.8 t/ha) [49]. Earlier (August 20)
and later (September 20 to October 10) sowing ensured the formation of much
lower yields [49]. The maximum content of protein (13.6%) and gluten (31.9%)
in the experiment was noted in winter wheat grain during a late sowing period
(October 10) for fallow naked, the minimum of September 10 for peas (respec-
tively 12.2 and 28.8%). In the first case, this can be explained by the low plant-
ing density: a large feeding area played a positive role in creating high-quality
grain of winter wheat. In the second, quality indicators were low due to optimal
stem density and high yield [49]. Indeed, early sowing as a rule forms a large
vegetative mass, which creates the prerequisites for the most developed autumn
shoots to die from damping off, and late sowing does not have time to develop,
remaining on the primary roots, winter poorly and grow weakly, which affects
their productivity [49].

Using early-flowering winter wheat cultivars shows higher yield gains (26—
38%) than early sowing (6—10%), which is able to reverse yield reductions. Ad-
opted early-flowering cultivars successfully advance the onset of anthesis and
grain-filling period, which reduces or avoids the risk of exposure to increased
drought and heat stress in late spring [60]. Additionally, the near-constant in-
creases in average yields for 2021-2050 and 20512080 (up to 39%), using 30%
early flowering cultivars, may highlight potential opportunities for improved
local yields despite adverse conditions. unfavorable climatic conditions [60].

To achieve food security, farmers depend on quality seeds of varieties appro-
priate to their needs. However, over the past decades in Russia, the contribution
of cereal varietal selection has been estimated at 30—70%, and as climate change
intensifies, it will steadily increase [1]. The system of increasing the production
of high-quality wheat grains can work effectively only if there is an appropriate
economic mechanism to increase the economic interest of participants in agri-
cultural activity. In this regard, it should be noted that in recent years, the de-
velopment of the grain economy in the Russian Federation has been facilitated
by the following state support measures that have boosted grain production: the
granting of subsidies for the granting of untied support to agricultural producers
in the field of crop production; the provision of subsidies to reimburse part of
the costs of agricultural producers to pay interest on loans for the development
of agricultural production, and short-term preferential loans [1].
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Seed treatment with pesticides is one of the targeted, economical, and envi-
ronmentally friendly measures to protect plants from diseases and pests. Thus,
the initial treatment of wheat seeds with carboxin + thiram resulted in grain yield
increases of 9% and 8% in successive years compared to the supplemental control
treatment [50]. A single foliar spray after flowering further increased grain yields
by up to 15%, demonstrating the potential of this complementary fungicidal ap-
proach [50]. Similarly, seed treatment with tebuconazole, triticonazole individ-
ually increased yield by 8-9%. When the seeds were treated with disinfectants
based on two active ingredients, the yield increased by 14—16% [29].

For editing plant genomes, the researchers used a number of experimental
developments, such as zinc finger nuclease (ZFN), transcription activator-like
effector nucleases (TALEN), and a nuclease 9 associated with short repeats.
regularly spaced palindromics (CRISPR/Cas9): from virtual bioinformatics
selection of targets in the wheat genome to obtaining seeds that successfully
inherit introduced mutations. For the first time, the CRISPR/Cas9 system was
successfully used to edit the TaMLO gene (Mildew resistance locus O) in wheat
in 2014, the HKT1 gene (high-affinity potassium transporter gene) in maize in
2014, and HvPM19 (codes for a plasma membrane protein) from barley in 2015
[53]. Now, the number of experimental and methodological publications on ge-
nome editing of these cultures using CRISPR/Cas is increasing exponentially
every year, and editing efficiency is reaching very high frequencies—from mu-
tations are found in nearly 100% of edited maize and barley plants and reaches,
at best, just over 50% for wheat [53]. Similarly, work has also been published
aimed at reducing the allergen content of wheat grain by genetic editing of the
conserved region of a-gliadin (nRNA) synthesis genes [53].

The first genome-edited wheat plant obtained through the use of CRIS-
PR-Cas9 was reported by Wang et al. (2014). This was achieved in combination
with TALEN genome editing technology to eliminate the three sub-genomes
of the MLO (Mildew Resistance Locus) gene to confer resistance to powdery
mildew in wheat [58]. Similarly, the gene encoding enhanced disease resis-
tancel (EDR1), a negative factor against powdery mildew defenses, was si-
multaneously modified using CRISPR/Cas9, generating wheat with improved
resistance to powdery mildew [61]. Wang W. et al. (2018) also demonstrated
multiplexed gene editing of three wheat genes, TaGW2 (a negative regulator
of grain traits), TaLpx-1 (lipoxygenase, which confers resistance to Fusari-
um graminearum) and TaMLO (loss of function, which confers resistance to
powdery mildew), using the wheat snRNA U3 promoter [59]. The deoxyniva-
lenol-induced transcription factor TaNFXL1 promotes wheat susceptibility to
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Fusarium graminearum by unknown mechanisms. Thus, CRISPR-mediated
genome editing of the Fielder cultuvar indicated that TANFXL1 represses F.
graminearum resistance [10]. Thus, CRISPR/Cas9 is an important way to im-
prove wheat disease resistance.

The usefulness of these “good prophylactic practices”, which aim to prevent
the appearance or spread of disease by tilling the soil before sowing and the
choice of rotation, to develop resource conservation technologies to improve
fertility and soil productivity in a changing climate [23, 27].

Thus, a diversified crop rotation improved the yield of spring wheat by up
to 30% in direct seeding and 13% in plowing compared to monoculture. Sim-
ilarly, on average, the severity of wheat leaf spot disease, mainly caused by
Pyrenophora tritici-repentis, was 20% lower when wheat was grown every
four years (spring wheat-shuttle-barley-pea) compared to wheat monoculture
in southwestern Finland [28]. The yield in the summer fallow rotation was 4.31
t/ha, the yield where the predecessor of wheat had been pea, was 4.00 t/ha, and
the yield in the gain-grass rotation was 3.94 t/ha for twenty years of experience
[52]. Crop rotation reduces yield losses caused by weather extremes for spring
(barley and wheat) and winter (oats, wheat, and rye) cereals, providing great
benefits, especially under dry conditions. On average, winter and spring cere-
als are produced more in diversified rotation, producing, respectively, 860 and
390 kg/ha per year, which corresponds to a yield gain of 20 to 25% compared
to monoculture [35]. When sowing on fallow land, on average for 2018-2021,
the new variety Omskaya 44 (created by the method of intraspecific hybridiza-
tion) significantly exceeded the standard Duet and the best variety of the for-
est-steppe zone, Omskaya 38, in terms of yield. The excess protein and gluten
content in the grain of the new variety averaged 2.23 and 4.00%, respectively,
compared to the norm [5]. Similarly, septoria caused yield losses for both sen-
sitive varieties (Razzak and Karim) and the most tolerant varieties, including
Maali and Salim. The incidence of this disease was also higher in direct sow-
ing for the four genotypes tested compared to conventional. The nitrogen and
protein content for the two tolerant genotypes (Maali and Salim) increased by
20% and 22%, respectively, when applying conventional seeding compared to
direct seeding [7].

One of the possible levers of action is to improve the management of nitro-
gen fertilization, a key factor in controlling and increasing yields. In addition,
this fertilization is an important component in the management of some of the
most dreaded diseases in wheat-producing regions. Thus, the supply of fertil-
izers at a dose of 1.5 g/L and especially that of ammonium nitrate significantly
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reduced the severity of the disease of wheat inoculated with F. culmorum, result-
ing in an improvement in grain yield and of its components [16-18]. As part of
the control of wheat powdery mildew (Blumeria graminis f. sp. tritici) and stripe
rust (Puccinia striiformis Westend f. sp. tritici) and crop yield increase, nitrogen
fertilization with 180 kg/ha was found to be optimal in southwest China [32].

Improve the irrigation system to ensure the water supply of wheat during
the critical growth period, which is beneficial to reduce the impacts of the drier
climate in tropical and subtropical areas and reducing yield losses of wheat [23,
43]. In addition, regular irrigation can reduce leaf colonization by spores [43].

Under unique spring irrigation conditions in the North China Plain, 90 mm
of irrigation at the 4-leaf age of wheat in spring was the optimal time for water
use efficiency, and grain yield. The increase in grain number can be attributed
to the higher daily water intake and percentage water intake of the L4 through-
out the join-anthesis stages compared to the visible 3-leaf (L3) stages, visible
4-leaf stage (L4), visible 5-leaf stage (L5), and visible 6-leaf stage (L6) [4].

More recently, the applications of nanotechnology in the agricultural field
most often consist of encapsulating known herbicides, fungicides, or insecti-
cides in synthetic nanocarriers composed of clay, silica, lignin, or natural poly-
mers, in particular alginate, chitosan, and ethylcellulose [27].

To prepare for adaptation to climate change, it is necessary to isolate the
effects of each factor for possible impacts on yield, as changes in different fac-
tors generally require different coping strategies [31, 62].

First, constant monitoring for the emergence of new plant diseases and im-
proved pest forecasting systems. Climate changes on the planet are of interna-
tional importance, so it would be expedient to create an international network of
observations of the spread of plant diseases and microorganisms in the soil hab-
itat and to ensure a constant exchange of information between countries [31].

The exchange of information at the international level on trade flows as well
as on the occurrences and interceptions of harmful organisms is extremely im-
portant to compensate for the lack of data from scientific research on the effects
of climate change on plant health. It is also essential to share information on
the evolution of the distribution of pests and their host ranges, as well as on the
adaptive capacity of pests and host plants [27].

Coating urea with secondary nutrients, neem oil, and microorganisms are
very effective technique to improve fertilizer use efficiency and wheat produc-
tion in calcareous soils and reduce nitrogen in the soil and arid environments
(Ghafoor et al., 2021). To optimize grain protein accumulation and quality for-
mation, it is essential to manipulate the source-sink relationship by increasing
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grain N demand and N metabolism activity, resulting in the remobilization of
more N [33].

Growing concerns have been expressed by the public about environmental
contamination, food safety, and human health issues arising from the heavy use
of pesticides in agriculture and food production. Therefore, the application of
biopesticides based on strains of C. rosea, T. harzianum, P. fluorescens, and B.
subtilis will reduce the use of fungicides, as detailed by [15].

From planting crops to harvesting, wheat must be placed after the prede-
cessors of perennial legumes and leguminous crops in the rotation, as well as
biological preparations as fertilizers, and replace nano-fertilizers with conven-
tional fertilizers to ensure environmental safety. However, a combination of
silicate and nitrogen fertilization can also be used. Because experiments in dif-
ferent countries, including Germany, China, New Jersey, Brazil, Poland, Egypt,
Canada, and Iran, have shown that fertilizing soil or treating plants with silicon
improves the quantity and quality of wheat yields under different conditions
[13]. Applying silicon, applied to the soil as calcium magnesium silicate in
the furrow and as potassium silicate applied to the leaves or as soluble sodium
metasilicate, can reduce up to 5-80% of the severity of wheat blast caused by
Magnaporthe oryzae, powdery mildew caused by Blumeria. graminis f. sp. trit-
ici, Fusarium head blight caused by Fusarium graminearum, leaf spot caused
by Bipolaris sorokiniana, leaf spot caused by Stagonospora nodorum, septoria
leaf spot caused by Zymoseptoria tritici, leaf spot caused by Oculimacula yal-
lundae, and tan spots caused by Pyrenophora tritici-repentis [13]. The role of
Si in wheat-pathogen interactions is linked to its action to modulate the plant’s
defense against the stressor [13]. Indeed, in wheat, it stimulates the produc-
tion of glutathione reductase, phenolic compounds (flavonoids), phytoalexins,
ligninthioglycolic acid, and H,O,, which leads to an increase in the incubation

272
period and a reduction in the colonization of host cells by the pathogen [13].

Conclusion

In conclusion, the evidence revealed in this review indicates that climate
change will in many cases lead to an increase in the various diseases attacking
wheat. However, these recent climate changes are already forcing changes in
plant protection protocols. To develop an effective agricultural management
strategy, future research should be based on the study of the interactions among
crops, pests, pathogens and farming system under climate change, taking into
account all parameters such as temperature increase and CO2, extreme precip-
itation, etc.
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