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Abstract
Background. The aggravation of the problem of antimicrobial resistance caused 

by the irrational use of antibiotics in agriculture and aquaculture necessitates the 
search for sustainable and safe alternatives. Bacteriocins are ribosomally synthe-
sized antimicrobial peptides of bacterial origin. A class of natural compounds for 
combating resistant pathogens with minimal environmental impact. This review 
explores the complex potential of using bacteriocins as an alternative to antibiot-
ics. A detailed analysis of the structural diversity, classification approaches, and 
established mechanisms of antimicrobial action was carried out, including disrup-
tion of cell membrane integrity, inhibition of cell wall synthesis, and inhibition of 
nucleic acid and protein production. Key bacteriocin-producing genera (Bacillus, 
Streptomyces, and Pseudomonas) and their biologically active metabolites have 
been identified. The analysis of bacteriocins’ use in agriculture, in particular their 
role as agents of biocontrol of phytopathogens, plant growth promoters, as well as 
means of improving the health and productivity of farm animals and birds. Their 
potential in aquaculture for disease control (directed against pathogens such as Vib‑
rio spp., Aeromonas spp., Yersinia ruckeri), water quality improvement, and feed 
conservation is considered, which helps reduce dependence on the preventive use 
of antibiotics. Despite significant achievements, challenges remain related to in vivo 
efficacy assessment, development of delivery systems, the possibility of resistance 
development, and regulatory aspects. Addressing these issues is a key condition for 
realizing the potential of bacteriocins as environmentally sound tools for ensuring 
food security and sustainable development of terrestrial and aquaculture systems.

Purpose. The aim of this review is to comprehensively analyze the potential of 
bacteriocins as a sustainable alternative to antibiotics in agriculture and aquaculture. 
This involves summarizing current knowledge on their structural diversity, classifi-
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cation, mechanisms of antimicrobial action, key producer genera, and practical appli-
cations in crop production, livestock farming, and aquaculture disease management.

Materials and methods. This study is a descriptive review. The material for 
the analysis was composed of contemporary scientific literature sourced from da-
tabases such as PubMed, Scopus, and Google Scholar. The methodology includ-
ed a systematic search, selection, and critical analysis of publications focusing on 
bacteriocin production, classification, mechanisms of action, and their applications 
in terrestrial and aquatic agricultural systems. The review synthesizes data from in 
vitro and in vivo studies to present a holistic overview of the field.

Results. The analysis reveals the significant structural and functional diversi-
ty of bacteriocins, which can be classified into several classes (e.g., lantibiotics, 
unmodified peptides) based on genetic and structural criteria. Their antimicrobi-
al mechanisms are multifaceted, primarily involving pore formation in target cell 
membranes, inhibition of cell wall synthesis (e.g., via lipid II binding), and disrup-
tion of nucleic acid and protein synthesis. Key soil-derived genera, including Bacil‑
lus, Streptomyces, and Pseudomonas, are prolific producers of diverse bacteriocins 
with activity against major plant, animal, and aquatic pathogens (e.g., Listeria, 
MRSA, Aeromonas, and Vibrio). In agriculture, bacteriocins demonstrate poten-
tial as biocontrol agents against phytopathogens and as plant growth promoters. In 
aquaculture, their applications span disease control, water quality improvement, 
feed preservation, and use as probiotic supplements, contributing to enhanced ani-
mal health and reduced reliance on prophylactic antibiotics.

Conclusion. Bacteriocins emerge as a highly promising and environmentally 
sound tool for enhancing the sustainability and productivity of both terrestrial and 
aquatic agricultural systems. Their targeted activity against key pathogens, role in 
biocontrol and growth stimulation, and ability to preserve product quality with mini-
mal impact on beneficial microbiota underscore their potential. However, translating 
this potential into practical, scalable solutions necessitates addressing several chal-
lenges. Future efforts must focus on robust in vivo efficacy testing, the development 
of effective delivery systems, understanding the risks of resistance development, and 
navigating the regulatory landscape. Interdisciplinary research is crucial to bridge 
the gap between laboratory findings and field application.
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БАКТЕРИОЦИНЫ                                                              
ДЛЯ СЕЛЬСКОГО ХОЗЯЙСТВА И АКВАКУЛЬТУРЫ

Б.Ч. Месхи, Д.В. Рудой, А.В. Ольшевская, Д.А. Козырев,                              
В.Н. Шевченко, М.Ю. Одабашян, С.В. Теплякова, Д.А. Джедиров

Аннотация
Обоснование. Обострение проблемы антимикробной резистентности, 

вызванной нерациональным использованием антибиотиков в сельском хо-
зяйстве и аквакультуре, обуславливает необходимость поиска устойчивых и 
безопасных альтернатив. Бактериоцины представляют собой рибосомно син-
тезируемые антимикробные пептиды бактериального происхождения – класс 
природных соединений для борьбы с резистентными патогенами, обладающий 
минимальным воздействием на окружающую среду. В данном обзоре исследу-
ется комплексный потенциал применения бактериоцинов в качестве альтерна-
тивы антибиотикам. Проведен детальный анализ структурного разнообразия, 
подходов к классификации и установленных механизмов антимикробного дей-
ствия, включая нарушение целостности клеточной мембраны, ингибирование 
синтеза клеточной стенки, а также подавление синтеза нуклеиновых кислот и 
белков. Определены ключевые продуцирующие бактериоцины роды (Bacillus, 
Streptomyces и Pseudomonas) и их биологически активные метаболиты. Проа-
нализировано применение бактериоцинов в сельском хозяйстве, в частности 
их роль в качестве агентов биоконтроля фитопатогенов, стимуляторов роста 
растений, а также средств улучшения здоровья и продуктивности сельско-
хозяйственных животных и птиц. Рассмотрен их потенциал в аквакультуре 
для контроля заболеваний (направленных против таких патогенов, как Vibrio 
spp., Aeromonas spp., Yersinia ruckeri), улучшения качества воды и консервации 
кормов, что способствует сокращению зависимости от превентивного исполь-
зования антибиотиков. Несмотря на значительные достижения, сохраняются 
проблемы, связанные с оценкой эффективности in vivo, разработкой систем 
доставки, возможностью развития резистентности и регуляторными аспекта-
ми. Решение этих вопросов является ключевым условием для реализации по-
тенциала бактериоцинов в качестве экологически безопасных инструментов 
обеспечения продовольственной безопасности и устойчивого развития назем-
ных и аквакультурных систем.
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Цель. Провести комплексный анализ потенциала применения бактериоци-
нов в качестве альтернативы антибиотикам в сельском хозяйстве и аквакуль-
туре, обобщив данные об их классификации, механизмах действия, основных 
продуцентах и направлениях использования.

Материалы и методы. Проведен обзор и анализ современных научных 
литературных источников, посвященных бактериоцинам, их продуцентам 
(включая роды Bacillus, Streptomyces, Pseudomonas), механизмам антимикроб-
ного действия и практическому применению в агросекторе и аквакультуре.

Результаты. Систематизированы данные о структурном разнообразии и 
классификации бактериоцинов. Подробно описаны установленные механизмы 
их антимикробного действия, включая нарушение целостности клеточной мем-
браны, ингибирование синтеза клеточной стенки, нуклеиновых кислот и белков. 
Выявлены ключевые роды бактерий-продуцентов и охарактеризованы их био-
логически активные метаболиты. Проанализированы возможности применения 
бактериоцинов в растениеводстве в качестве агентов биоконтроля фитопатогенов 
и стимуляторов роста растений, а также в животноводстве и птицеводстве для 
улучшения здоровья и продуктивности. Рассмотрен потенциал бактериоцинов в 
аквакультуре для контроля заболеваний (включая патогены Vibrio spp., Aeromonas 
spp., Yersinia ruckeri), улучшения качества воды и консервации кормов.

Заключение. Бактериоцины представляют собой экологичную альтерна-
тиву традиционным антибиотикам для повышения продуктивности и устой-
чивости агро- и аквасистем. Реализация их потенциала требует решения задач, 
связанных с оценкой эффективности in vivo, разработкой систем доставки, 
изучением рисков развития резистентности и преодолением регуляторных 
барьеров.

Ключевые слова: бактериоцины; устойчивое сельское хозяйство; кон-
троль заболеваний в аквакультуре; рыбные патогены; пробиотики; почвен-
ные бактерии
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Introduction
In addition to antibiotics’ use in the medical field, they are also widely used 

in the agro-industrial sector [59; 111]. The intensive development of crop pro-
duction, animal husbandry and aquaculture require their use to increase yields, 
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treat and prevent infections [61; 86], as well as growth stimulants in feed (in 
controlled doses) [24]. The use of antibiotics in agriculture is global and ex-
tremely uneven. China accounts for about half of the global volume, followed 
by the USA, Brazil, India and Germany [53]. In 2010, China was the largest 
consumer of veterinary antimicrobials (approximately 30% of global produc-
tion) [50]. According to the Van Boeckel et al. (2015), by 2030, the consump-
tion of antibiotics in densely populated countries will increase by 67%. The 
widespread use of antibiotics, although it helped meet the growing demand for 
agricultural products, led to negative environmental consequences, such as the 
emergence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes 
(ARG) [111; 118]. In this regard, the issue of finding alternatives to the use of 
antibiotics in agriculture becomes urgent [4; 116], one of which may be the use 
of probiotic bacteria and bacteriocins [7; 81], in aquaculture inclusively [75].

Bacteriocins are a heterogeneous group of ribosomally synthesized antimi-
crobial peptides. They are of great interest as a strategy for overcoming antibiotic 
resistance [26]. Having a wide spectrum of action and diverse biochemical prop-
erties [103], bacteriocins provide a competitive advantage to producing bacteria 
[115], which makes them and pro-ducing probiotics promising for use. The rele-
vance of the approach is also confirmed by the growing losses in aquaculture due 
to bacterial diseases, where the use of bacteriocins is being investigated due to 
their activity against gram-positive and gram-negative bacteria [83]. Despite the 
potential, the introduction of bacteriocins (including use with probiotics in feed) 
requires a detailed approach to safety assessment to risk minimization.

Soil ecosystems have the highest microbial diversity on Earth, where in-
tense competition drives the evolution of powerful antimicrobial compounds. 
The genera Bacillus, Pseudomonas, and Streptomyces are producers of struc-
turally diverse bacteriocins [94]. Biostimulators of growth are one of the pos-
sible applications derived from soil ecosystems of bacteriocins [93]. In a study 
by the Subramanian (2014), it was indicated that the effective concentration of 
bacteriocins for stimulating plant growth is approximately nanomolar, which 
makes them an economically advantageous alternative for reducing the use of 
fertilizers and agrochemicals. Bacteriocins can act as an alternative to antibi-
otics in agriculture to combat pathogenic and antibiotic-resistant bacteria, es-
pecially zoonotic strains [63]. In particular, bacteriocinogenic Escherichia coli 
demonstrates antagonistic activity against resistant strains isolated from animals 
and can reduce dependence on antibiotics in animal husbandry. However, suc-
cessful application requires an in-depth study of the mechanisms of action and 
effectiveness of bacteriocins in vivo. Peptides of terrestrial origin demonstrate 
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effectiveness, including against aquatic pathogens, which indicates the selec-
tivity of their molecular targets in different ecological niches [19].

Purpose. This review aims to synthesize current knowledge on the poten-
tial of bacteriocins as viable alternatives to conventional antibiotics in agricul-
ture and aquaculture. It seeks to elaborate on their classification, mechanisms 
of action, the principal bacterial genera involved in their production, and their 
practical applications in enhancing plant growth, controlling livestock diseases, 
and managing pathogens in aquaculture systems.

Materials and methods
This article is a comprehensive narrative review. The data were gathered 

through an extensive examination of the scientific literature. The methodology 
involved identifying relevant studies via academic databases using keywords 
such as “bacteriocins,” “agriculture,” “aquaculture,” “probiotics,” and “antimi-
crobial peptides.” The selected literature was then analyzed to extract informa-
tion on bacteriocin characteristics, producer organisms, mechanisms of action, 
and documented applications in the specified fields. The synthesis of this infor-
mation provides a state-of-the-art overview intended to highlight both the cur-
rent achievements and future challenges in bacteriocin research and application.

Results
In natural conditions, bacteria compete for resources using a variety of sur-

vival strategies, including the synthesis of antimicrobial compounds such as 
bacteriocins [15; 18]. Bacteriocins are protein molecules characterized by a high 
specificity of action directed mainly against close competitor strains [32]. This 
mechanism helps to reduce the number of related bacteria and enrich the mi-
crobial community with taxons carrying new genes, which ultimately increases 
the biodiversity and functional efficiency of the community [102]. Secreted by 
both gram-positive and gram-negative bacteria, bacteriocins exhibit significant 
structural and genetic diversity, as well as variability in biochemical properties, 
mechanisms of action, and specificity to target cellular receptors [27]. Unlike 
broad-spectrum antibiotics, bacteriocins have a narrow specificity, selectively 
inhibiting certain strains with minimal effect on the autochthonous microbiota, 
and exhibit high activity in low concentrations [98].

In the food industry, bacteriocins are used as natural bioconservants (for 
example, low-grade Lactococcus lactis) to increase the shelf life of products 
[62; 69, 88] which can be used to increase the shelf life of feed. The potential 
of their medical use is confirmed by data from preclinical and clinical studies 
[42], which in turn shows their effect on pathogenic organisms.
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It should be noted the importance of bacteriocins’ action in the rhizosphere, 
where they inhibit the development of phytopathogens, reducing plant morbid-
ity, and promoting their productive growth. Synthesized by rhizospheric micro-
organisms, bacteriocins are an environmentally friendly alternative to chemical 
pesticides [38]. The expression of bacteriocin genes is regulated by bacteria in 
response to stress factors and intercellular interactions, including activation 
through quorum sensing systems upon reaching high cell density [9; 68].

In recent years, there has been a significant increase in research interest in 
rhizobacterium bacteriocins due to their high biotechnological potential as agents 
of biological control of phytopathogens or biostimulators of plant growth [33].

Throughout the history of research devoted to bacteriocins, their classifica-
tion has been one of the most controversial issues. Figure 1 shows one of the 
approaches to bacteriocins’ classification [120].

Fig. 1. Classification of bacteriocins

The initial systematization of bacteriocins was based on their division into 
two classes: class I includes lantibiotics, peptides that have undergone posttrans-
lational modification to form lanthionine, whereas class II unites bacteriocins 
consisting of unmodified amino acids [25].
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Güllüce et al. (2013) and Mokoena (2017) describes the formation of well-
known classifications based on various characteristics, such as the type of pro-
ducing bacteria, molecular characteristics, and mechanisms of action. Modern 
classifications [10] integrate genetic and structural-functional criteria, including 
the concept of RiPP (ribosomally synthesized and post-translationally modified 
peptides), covering lantibiotics and related compounds.

Just as in the classification, there was no consensus on the principles of bacte-
riocins’ action. For example, Solis-Balandra and Sanchez-Salas (2024) describes 
the possible mechanisms of their action. Bacteriocin PLNC8 exhibits inhibitory 
activity against Helicobacter pylori, but the mechanism of action remains unclear 
[55]. At the same time, for some groups of bacteriocins produced by lactic acid 
bacteria (LAB-bacteriocins), the mechanisms have been thoroughly studied [89]. 
Lantibiotics carry out bacteriolysis in two ways: disruption of cell wall synthe-
sis and pore formation. In the first case, lantibiotics inhibit wall synthesis either 
by binding to lipid II (a key intermediate in the transglycosylation reaction, as in 
gallidermin [64], or by blocking the incorporation of glucose and D-alanine into 
peptidoglycan precursors (although this process also depends on the presence 
of lipid II) [64]. The mechanism of pore formation is a violation of the integrity 
of the cell membrane. Another well-studied group are colicins produced by E. 
coli, which act against gram-negative bacteria. Their tertiary structure includes 
three functional domains: receptor (for binding to the membrane), translocation 
(for penetration into the cell) and toxic. The toxic domain implements its action 
through the formation of potential-dependent pores in the inner membrane, nu-
clease activity against genetic material, or inhibition of peptidoglycan synthesis. 
However, the specific ways of implementing these mechanisms may vary [60].

Sharma et al. (2021) described detailed mechanisms of action in the study. 
Bacteriocins suppress pathogenic bacteria by forming pores in the membrane, 
inhibiting the synthesis of the cell wall, nucleic acids and proteins. One of these 
mechanisms of action is shown in Figure 2. As a rule, these substances have a 
narrow spectrum of antimicrobial activity, acting mainly on closely related spe-
cies. However, some bacteriocins exhibit a wide spectrum of action, effective also 
against phylogenetically distant bacteria [51]. Their main biological role is to pro-
tect the producer: they limit the growth of competing strains or prevent the inva-
sion of other bacteria, thereby providing an advantage in the ecological niche [82].

The use of bacteriocins, due to their properties and principles of action, 
covers several important areas. Increasing the shelf life of products through the 
suppression of pathogens and bacteria in the food industry [34]. Bacteriocins 
act as biocontrol agents, promoting plant growth and development, as well as 
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increasing yields [12]. Antimicrobial activity against pathogens makes it pos-
sible to use it as a probiotic to maintain human health and enhance immunity 
[106]. In addition, they are used in veterinary medicine, the production of feed 
additives, contribute to productivity in poultry and pig farming (Schofs et al., 
2020), aquaculture and are effective against animal pathogens.

Fig. 2. The mechanism of action of bacteriocins through the formation of pores

Soil as a source of bacteriocinogenic bacteria
Investigations over the years have focused on the issue of studying soil 

bacteria that produce bacteriocins [36; 41; 108; 114]. The range of studied bac-
terial species (bacteriocins) is quite wide and diverse. The bacteria studied by 
a number of authors (and their bacteriocin derivatives) are shown in Table 1.

Table 1.
Bacteriocin-producing bacteria and their characteristics

Bacterium Bacteriocin Functions Target organism References

Bacillus 
brevis Bb Bacillocin Bb

Protection 
against unde-
sirable bacteria

S. aureus, M. luteus, C. 
diphtheriae, C. xerosis 
and C. hoffmanni

(Saleem et 
al., 2009)

Pseudomo-
nas aerugi-
nosa Pa

Pyocin Pa
Protection 
against unde-
sirable bacteria

S. aureus, S. epidermidis, 
S. pyogenes, E. faecalis, 
M. luteus, C. diphtheria, C. 
xerosis and C. hoffmanni

(Saleem et 
al., 2009)

Bacillus li-
cheniformis 
VPS50.2

licheniocin 
50·2

Active against 
Gram-positive 
bacteria

Listeria monocytogenes, 
methicillinresistant Staph‑
ylococcus aureus (MRSA) 
and β-haemolytic strep‑
tococci

(Berić et 
al., 2014)
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Bacillus 
altitudinis 
ECC22

Pumilarin, 
altitudin A

Suppression 
of growth and 
reproduction 
of pathogenic 
and competitive 
microorganisms

Bacillus safensis LTh12; 
Bacillus pumilus PE12; 
Listeria monocytogenes 
CECT 4032; Pediococcus 
damnosus CECT 4797; 
and other gram-positive 
bacteria

(Lafuente 
et al., 
2024)

Bacillus 
cereus Bc7 Cerein 7

Antibacterial 
activity against 
Gram-positive 
bacteria

Listeria innocua G244; 
Micrococcus luteus 
ATCC 7468 and Staph‑
ylococcus aureus ATCC 
12600

(Oscáriz 
and Pi-
sabarro, 
2000)

Bacillus 
thuringien-
sis BUPM4

Bacthuricin 
F4

Antibacterial 
activity against 
Gram-positive 
bacteria

Bacillus thuringiensis subsp. 
Kurstaki; Bacillus cereus; 
Bacillus subtilis; Bacillus 
ureus; Bacillus lichenifor‑
mus; Enterobacter cloacae

(Kamoun 
et al., 
2005)

Rhizobium

Rhizobium 
leguminosa-
rum bv. viciae 
LC-31

Produce antimi-
crobial activity, 
which inhibited 
the growth of the 
related strains

R. leguminosarum bv. 
Viciae; Agrobacterium sp

(Hafeez et 
al., 2005)

Bacillus. 
sphaeri-
cus strain 
SOPB1

-

An alternative 
source for the 
production of 
peptide antibiot-
ics; inhibit meth-
icillin resistance

Bacteriocin exhibits high 
antagonistic activity 
against MRSA, S. aureus 
and B. subtilis

(Aunpad 
et al., 
2011)

Bacillus 
subtilis 
L-Q11

Subtilin 
L-Q11

It is able to in-
hibit the growth 
of various 
Gram-positive 
bacteria, retains 
more than 96% 
of its antibac-
terial activity 
after pasteuriza-
tion and more 
than 58% after 
high-temperature 
sterilization, 
demonstrates 
activity in the pH 
range from 2 to 9

B.amyloliquefaciens, L. 
lactis, L. plantarum, S. 
aureus, E. faecalis, S. 
aureus ATCC 29213, Ba‑
cillus spp

(Qin et al., 
2019)
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Brevibacil-
lus

Brevibacillus 
reuszeri (B12) 
и Brevibacillus 
formosus (B22)

Against vari-
ous pathogenic
bacteria and 
fungi

Salmonella typhi, Bacil‑
lus cereus

(Gholiza-
deh et al., 
2013)

The genus Streptomyces is a gram-positive, predominantly soil saprophytic 
bacteria [17] that forms branching mycelium and stable spores, which contributes 
to their survival in adverse conditions [85]. Although individual species may be 
plant pathogens [5] or rare human pathogens, their key ecological role is related to 
the production of bacteriocins. The ability to produce a wide variety of these sub-
stances [45] provides Streptomyces with an antagonistic effect against competing 
microorganisms and pathogens. They also play a fundamental role in regulating 
soil microbial communities, suppressing the growth of undesirable organisms and 
maintaining ecological balance. The large-scale production of secondary metabo-
lites due to the large size of the genome and its features [48] explains the growing 
interest in Streptomyces as potential probiotics or sources of biocontrol agents.

Yanagida et al. (2006) conducted a study on the isolation of lactic acid bac-
teria producing bacteriocin from soil in Yamanashi Prefecture, Japan. 42 strains 
of acid-producing bacteria were isolated from 55 soil samples. Three isolates 
showed antibacterial activity against Lactobacillus sakei JCM 1157 T: Lac‑
tobacillus animalis C060203, Enterococcus durans C102901, and subspecies 
Leuconostoc mesenteroides C060204. Bacteriocins from L. animalis C060203 
act on 18 gram-positive bacteria. Bacteriocins from L. robustus C102901 has 
high temperature resistance and can be used as bioconservants.

Research by Saleem et al. (2009) is aimed at identifying and characteriz-
ing bacteriocins produced by soil-associated microorganisms (Bacillus brevis 
Bb (gram-positive) and Pseudomonas aeruginosa Pa (gram-negative)). Bacte-
riocins are produced by various bacterial species such as Bacillus spp., Pseu‑
domonas spp., Staphylococcus aureus and others. They were tested against 
Gram-positive bacteria, and the maximum production was observed at a tem-
perature of 32°C in a BHI environment. Both bacteriocins are stable at pH 
1-9 and 1-11, respectively, and resistant to high temperatures (100°C for 30 
minutes). The activity of bacteriocins is lost after treatment with proteinase K, 
which indicates their protein nature.

In addition to the soil bacteriocins themselves, studies have been conducted 
on bacteriocin-like extracellular metabolites (BLEM) with pronounced antago-
nistic activity against phylogenetically similar strains [2]. BLEM were obtained 
from Bacillus subtilis SF8 and Pseudomonas aeruginosa SF4. They demon-
strate high stability under extreme conditions: The B. subtilis SF8 metabolite 
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retained 71%, 92%, and 80% activity after 60-minute incubation at 90°C, pH 
4, and pH 10, respectively, while the P. aeruginosa SF4 BLEM retained 91%, 
81%, and 89% activity under the same conditions. Ultraviolet irradiation en-
hanced the activity of P. aeruginosa SF4 BLEM, but did not affect the activity 
of the B. subtilis SF8 metabolite. IR-Fourier spectroscopy (FTIR) data indicate 
that BLEM B. subtilis SF8 and P. aeruginosa SF4 damage the cell membranes 
of the indicator strains Bacillus macerans SF2 and Pseudomonas fluorescens 
BS2, respectively. Partially purified BLEM preparations also showed a wide 
range of inhibitory effects against the tested bacterial and fungal pathogens.

The study conducted by He et al. (2006) also examined bacteriocin-like pep-
tides produced by Bacillus licheniformis ZJU12. The peptides showed broad 
antagonistic activity against various types of gram-positive bacterial and fungal 
pathogens, but not against gram-negative bacteria, with the exception of Xan‑
thomonas oryzae pv. oryzae (the causative agent of rice diseases). Activity was 
stable at temperatures up to 100°C for 30 minutes, but completely lost at 121°C 
in 15 minutes. In the pH range from 2 to 9, with an optimal value of about 6.5.

The most significant and well-studied genera of soil bacteriocin-producing 
bacteria are Bacillus, Streptomyces, and Pseudomonas. However, the ability 
to produce these antimicrobial peptides is widespread among many other soil 
inhabitants, including Paenibacillus, Serratia, Enterobacter/Pantoea, Steno‑
trophomonas, and Burkholderia. The study of soil bacteriocins is critically im-
portant for understanding microbial ecology and developing new strategies for 
biocontrol and antimicrobial therapy.

Bacteriocins in aquaculture
The uncontrolled use of antibiotics in aquaculture (including their use as 

growth stimulants) to prevent infections has led to their spread in the environ-
ment [35]. This creates selective pressure on microbial communities, contribut-
ing to the development and spread of AMR [77]. Resistant bacteria form ARG 
reservoirs, turning aquaculture systems into AMR “hot spots”, which makes the 
study of aquaculture resistance critically important [107].

The transfer of antimicrobial resistant genes to human pathogens is an im-
portant negative factor for research. Transmission mechanisms can be either di-
rect (through common zoonotic pathogens (for example, Vibrio spp.) or indirect 
transmission (horizontal gene transfer). Bacterial infections pose a serious threat 
to the aquaculture industry, causing massive epizootics and significant econom-
ic losses. Disease control directly de-pends on the use of vaccines [91; 117], 
antibiotics, and chemotherapy, but these methods pose risks to animal health and 
the sustainability of aquatic ecosystems, as well as indirectly to human health 
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[6]. In this context, bacteriocins produced by probiotic strains represent a safe 
alternative. Understanding the mechanisms of their antimicrobial action against 
aquaculture pathogens is critically important for developing effective preventive 
strategies. Some of the known pathogens are shown in Table 2.

Table 2.
Bacteriocin-producing bacteria and their characteristics

Disease Causative 
agent

Affected 
objects

Distribution / 
Features

Key control 
issues References

Vibriosis

Vibrio anguil-
larum (O1, 
O2a), Aliivib-
rio salmonici-
da, V. ordalii, 
V. harveyi

Marine 
fish 
(salmon, 
sea bass, 
dorado, 
etc.)

Global. The sever-
ity depends on the 
strain, age of the 
fish, and environ-
mental conditions.

The need for 
new vaccine 
delivery meth-
ods for mass 
immunization

(Woo et al., 
2002; Jayasree 
et al., 2006; 
Bowser, 1999; 
Mohamad et al., 
2021)

Yersini-
osis

Yersinia ruck-
eri (Biotypes 
1, 2; Serotype 
O1)

Rainbow 
trout, 
Atlantic 
salmon, 
etc.

Fresh and sea 
water

Threat to trout 
farming; vac-
cines against 
different 
biotypes are 
needed

(Moeller, 2005; 
Toranzo et al., 
2009; Yang et 
al, 2021)

Enteritic 
sepsis of 
catfish

Edwardsiella 
ictaluri

Channel 
catfish, 
pangasius

High pathogenici-
ty for catfish

Development 
of safe and 
effective vac-
cines for juve-
niles

(Moeller, 2005; 
Toranzo et al., 
2009, Klesius 
and Shoemaker, 
1999; Abdel-
hamed, et al., 
2018; Triet et al, 
2019)

Bacterial 
disease 
of 
cold-wa-
ter fish

Flavobacteri-
um psychroph-
ilum

Salmon 
(young 
rainbow 
trout)

The cause of mass 
death of juveniles

Lack of 
commercial 
vaccines. Low 
efficiency of 
approaches

(Yimer Muktar 
et al., 2016, 
Toranzo et al., 
2009, Takeuchi 
et al., 2021)

Myco-
bacteri-
osis

Mycobacteri-
um marinum

>200 spe-
cies of fish 
(sea bass, 
tilapia, 
salmon, 
etc.)

Сhronicity. It is 
dangerous for sea 
bass in the Medi-
terranean and the 
Red Sea.

Lack of vac-
cines. Treat-
ment complex-
ity (chronic, 
intracellular)

(Bowser, 1999; 
Toranzo et al., 
2009; Colorni, 
1992; Diamant 
et al., 2000)

Bacterial 
kidney 
disease

Renibacterium 
salmoninarum

Salmon 
family

Chronic systemic 
infection. High 
mortality rate. 
Vertical transmis-
sion

Complexity 
of vaccine 
development 
(vertical 
transmission, 
intracellular 
parasitism)

(Yimer Muktar 
et al., 2016, 
Toranzo et al., 
2009; Newman, 
1993; Delghan-
di et al., 2020)
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One such solution may be the use of lactic acid bacteria bacteriocins (LAB). 
They are used in aquaculture in three key areas [115]. Firstly, their inclusion in 
feed for aquatic organisms suppresses the growth of harmful microflora in the 
feed itself, prolongs its shelf life, and inhibits pathogenic bacteria in the body 
of animals, contributing to an in-crease in their immunity. Secondly, the use of 
bacteriocins as a component of probiotic preparations for the treatment of res-
ervoirs can improve water quality. Their use minimizes the disturbance of the 
microecology of the growing environment and can increase feed consumption 
by aquatic organisms. Thirdly, the addition of LAB or the cultures producing 
them themselves as bioconservants during storage and transportation of aquatic 
organisms suppresses the development of pathogens and the formation of bio-
genic amines, ammonia and trimethylamine oxide, which significantly prolongs 
the shelf life of products and increases their safety.

Bacteriocins isolated from soil genera such as Stenotrophomonas, Leucono‑
stoc and Staphylococcus have diverse biological activity and their use is relevant 
in aquaculture, as indicated in Table 3.

Table 3.
Some bacteriocins isolated from the soil that are intended for use in aquaculture

Producing strain Bacteriocin Biological role Reference
Pseudomonas putida 
BW11M1 Not named Suppression of phyto-

pathogens (Parret et al., 2003)

Bacillus sp. TL12 Bacin A2 Suppression of biofilm 
formation (Liu et al., 2022)

Stenotrophomonas spp. Stenocins Antimicrobial activity (Liu et al., 2022)
Leuconostoc citreum 
ST110LD ST110LD Antimicrobial activity (Paškevičius et al., 

2022)
Staphylococcus aureus BAC-IB17 Antimicrobial activity (Woo et al., 2021)

Ansari et al. (2018) presents a wide list of probiotics used in aquaculture: 
Lactobacillus, Enterococcus, Bacillus, Aeromonas, Alteromonas, Arthrobacter, 
Bifidobacterium, Clostridium, Microbacterium, Paenibacillus, Phaeobacter, 
Pseudoalteromonas, Pseudomonas, Rhodosporidium, Roseobacter, Strepto‑
myces and Vibrio. They promote the growth of aquatic organisms and act as 
preventive agents, mainly administered with feed [20]. The bacteriocins synthe-
sized by them suppress pathogens (for example, Aeromonas spp.) and promote 
the viability of aquatic animals [95]. The antimicrobial peptide Lactobacillus 
acidophilus completely suppresses the highly virulent pathogen of aquacul-
ture A. hydrophila, unlike probiotics and postbiotics, which only delay fish 



239Siberian Journal of Life Sciences and Agriculture, Том 17, №6-2, 2025

death by 3-4 days [71]. Recombinant bacteriocins, such as nisin Z, prevent 
the colonization of pathogens in rainbow trout (Oncorhynchus mykiss), while 
enhancing immune functions and improving growth rates [3]. Substances with 
bacteriocin-like activity (BLS) obtained by coculturing E. faecium MU8 with 
A. veronii effectively inhibit the key pathogens of Nile tilapia A. jandaei and A. 
veronii [23]. The strategy of co-cultivation of bacteriocin-inducing gram-nega-
tive strains with gram-positive producers is becoming a promising method for 
increasing biosynthesis [79], optimizing their use in aquaculture.

Conclusion
Bacteriocins represent a promising and sustainable alternative to the tradi-

tional use of antibiotics in order to increase the productivity and sustainability 
of ecosystems in agriculture and aquaculture. This is confirmed by its targeted 
activity against key phyto-, livestock and aquatic pathogens, its role in bio-
control and growth stimulation, as well as its ability to preserve products and 
water quality, minimizing disruption of beneficial microbiota. However, the re-
alization of this potential faces the challenge requiring reliable testing beyond 
laboratory research, the development of effective delivery systems, under-stand-
ing the risks of resistance, and overcoming regulatory barriers. Successful im-
plementation requires careful consideration of specific environmental factors, 
farm management, and pathogen profiles within each unique production sys-
tem, along with interdisciplinary research to move from laboratory efficiency 
to practical, scalable solutions.
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