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ASSESSMENT OF THE SECURITY SYSTEM
OF AGRO-INDUSTRIAL ENTERPRISES

A.IL Dubrovina

Abstract

Background. In the era of digitalization, maintaining resilient security systems
in agro-industrial enterprises is crucial. This paper examines approaches to devel-
oping intelligent models aimed at assessing and predicting the resilience of orga-
nizational and technical systems based on the analysis of interrelated risk factors.
Cognitive and fuzzy modeling approaches are applied as methodological tools to
formalize expert knowledge and support managerial decision-making. A methodol-
ogy for constructing an integrated resilience indicator that takes into account both
external and internal dynamics is proposed. Scenario analysis demonstrates the
potential of intelligent algorithms to model critical situations and to select optimal
response measures. The developed models can be applied to strengthen infrastruc-
ture protection strategies, enhance information and physical security, and ensure the
sustainable operation of enterprises in uncertain environments.

The aim of the study is to develop and verify a model based on fuzzy cognitive
maps (FCMs) for the mathematical assessment of the resilience of agricultural enterprise
security systems. The work aims to integrate expert knowledge, scenario modeling, and
dynamic visualization of system behavior under changing external and internal factors.

Materials and methods. The methodological framework of the study is based
on cognitive and fuzzy modeling, simulation, and machine learning. FCMs are
used as tools, accounting for uncertainty, the subjectivity of expert assessments,
and nonlinear relationships between factors. Logistic Regression, Random Forest,
and XGBoost algorithms, implemented in Python, were used for computational
experiments. The analysis was conducted using the IGLA package for constructing
cognitive models and assessing impact scenarios.

Results. An intelligent security system resilience model was developed, incor-
porating five key concepts: financial resilience, human resources, technological
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reliability, information security, and organizational processes. Scenario modeling
was conducted to identify the impact of various management strategies on the in-
tegrated resilience indicator. Scenario simulations revealed that an integrated ap-
proach can increase overall system resilience by 15-20% compared to isolated
security improvements.

Machine learning experiments achieved a high classification accuracy (up to
0.98) across all models, with logistic regression providing the best balance between
precision and recall.

Conclusion. Intelligent models based on fuzzy cognitive maps and machine
learning methods provide effective assessments of the resilience of security systems
in agricultural enterprises. The proposed approach allows for the consideration of
uncertainty, modeling threat scenarios, and improving the adaptability of security
systems. The practical significance of this work lies in the potential application of
the developed models to improve infrastructure protection strategies, enhance in-
formation and physical security, and ensure the stable operation of enterprises in
uncertain environments.
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NHTEJUIEKTYAJIBHBIE MOJEJIM 1 ONEHKA
YCTOMYUBOCTHU CUCTEMBI BE3OITACHOCTH
ATPOIPOMBIIIJIEHHBIX IPEJNIPUATUNR

A.H. /[yoposuna

Annomauusn

Oo6ocHoBanme. B ycioBusix nuppoBuzanun odecrieueHne yCTOHUMBOCTH CH-
cTeM 0e30MacHOCTH MPEINPHUITHI arporpOMBIIITIEHHOTO KOMILIeKca Ipuodpera-
eT ocoboe 3HaueHne. B maHHOIT paboTe paccMaTpHBaIOTCS TOAXOIBI K pa3padoTke
WHTEJJICKTYaIbHBIX MOJIEJICH, HAIlpaBJIEHHBIX Ha OLIEHKY M MPOrHO3UPOBAHHUE
YCTOMYMBOCTH OPraHU3AI[MOHHO-TEXHUYECKUX CUCTEM Ha OCHOBE aHall3a B3au-
MOCBSI3aHHBIX ()aKTOPOB pUCKA. KOTHUTHUBHBIE 1 HEYETKHE MOJIEIIH UCTIONB3YIOTCS B
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KaueCTBE METOIMUECKOTO HHCTPYMEHTA [UIsl (POpMaTTH3aLUH SKCIIEPTHBIX 3HAHUI U
MTOJJICPIKKH PUHATHS yIIpaBJIeHYECKUX perieHnid. [Ipeioxkena Mmetonuka nocTpo-
€HHSI MHTETPAJIbHOTO MOKA3aTelsl YCTOMYMBOCTH, YYUTBIBAIOIIETO KaK BHEIIHIOHO,
TaKk ¥ BHYTPEHHIOIO TUHAMUKy. ClieHapHbII aHAIN3 AEMOHCTPHUPYET MOTEHIIMA
HMHTEJUIEKTYQJIbHBIX QJITOPUTMOB IPH MOAEIMPOBAHUH KPUTHUECKUX CHUTYallui U
BHIOOpE ONTHMAJbHBIX Mep pearnpoBaHus. [IpakTudeckas 3HAYUMOCTh HCCIIEHO0-
BaHMSI 3aKITI0YAETCS B BOSMOJKHOCTH UCTIOIB30BAHMS Pa3padOTaHHBIX MOJIEINISH ISt
COBEPIICHCTBOBAHUS CTPATET Ui 3aIIUThI HHQPACTPYKTYPbI, MOBBILICHUS HHPOpMa-
LMOHHOU U (U3UUECKOl Oe30IacHOCTH, OOecIeueHHs YCTOMYMBON paboThI Tpei-
MIPUATHUI B YCIOBUAX HEONPE/IEICHHOCTH.

Lean riccieoBaHus 3aKITI0YaSTCs B pa3paboTKe U BeprPHUKAIIMI MOJIEIH HA OCHO-
Be HeueTKuX KOrHUTUBHBIX KapT (HKK) 11t Maremarnueckoil OLIEHKH yCTOMYMBOCTH
CHCTeMbI 0e30IIaCHOCTH arpapHbIX MpeanpusTHii. PaboTa HanpasieHa Ha MHTETPaLio
SKCIIEPTHBIX 3HAHMH, CLIEHapHOE MOJEINPOBAHUE U JMHAMUUYECKYIO BU3yaln3alluio
TIOBEJICHUSI CUCTEMBI ITPU W3MEHEHUH BHEITHUX M BHYTPEHHUX (aKTOPOB.

MarepuaJjbl 4 MeTOAbl. MeTO0IOTHYECKYI0 OCHOBY MCCIICIOBAHUS COCTABIIS-
FOT METO/IbI KOTHUTUBHOTO M HEUETKOTO MOJICIMPOBAHUS, UMUTAIIMOHHOE MOJIEIIH-
poBanue u MamMHHOE 00y4yeHue. B kauectBe unctpymentapus npumeHens HKK,
MO3BOJISIFOIIME YYUTHIBATH HEONIPEICIICHHOCTD, CyObEKTUBHOCTh IKCIIEPTHBIX Olle-
HOK 1 HeJIMHEeWHBbIE B3aUMOCBSI3H (HaKTOPOB. [/l BEIYHUCIUTENBHBIX YKCIIEPHMEH-
TOB HCIOJIL30BaHEI anroputMel Logistic Regression, Random Forest u XGBoost,
peanuzoBanHble Ha Python. AHanu3 npoBoauiics ¢ ucrnonszoBanuem nakera MIJIA
Ul IOCTPOCHMS KOTHUTUBHBIX MOJIeJIEH U OLIEHKH CLIeHapHEB BO3/IEHCTBHUSI.

Pesyawrarsl. Paszpaborana nHreniekTyaibHas MOJIEIb YCTOMYMBOCTH CHCTEMBbI
0e30I1acHOCTH, BKJIFOYAIOIAs MATh KJIFOYEBBIX KOHIENTOB: ()MHAHCOBAs YCTONYH-
BOCTb, Ka/IpOBBIIl OTEHIINAN, TEXHOJIOTHYECKasi Ha/Ie)KHOCTh, HHPOPMAaLMOHHAS
0€30MacHOCTh M OpraHU3allMOHHbBIC TpoLecChl. [IpoBeIeHO clieHapHOE MOJIEIH-
poBaHUe, BbISBUBIIEE BIUSHUE PA3IMYHBIX CTPATErUil YIPABICHHUs HA HHTETPajb-
HBIH MOKa3aresnb yCTOMYMBOCTH. YCTAHOBIJIEHO, YTO IIPU KOMIUIEKCHOM IO/XO0JIe
yCTOMYMBOCTH MoBbImaercs Ha 15-20 % 1o CpaBHEHHIO C YACTUYHBIMH MEpaMu
ycusleHus: 0€30I1aCHOCTH.

Pe3synbrarsl MalIMHHOTO 00YYEHUS MOKa3aJIi BRICOKYHO TOYHOCTb Kilaccu(rka-
mu (1o 0,98) mms Bcex Mopene, mpy 3TOM JIOTUCTHYECKAsl PErpeccrs POIEMOH-
CTpUpOBaJIa HAWITy4IINii OalaHC TOYHOCTHU U ITOJTHOTBHI.

3akawuenue. MHTEUIEKTYaIbHBIC MOJICIM HA OCHOBE HEYETKUX KOTHUTHB-
HBIX KapT U METOJIOB MAITMHHOTO 00Y4YeHHUs 00eCTIeYnBaOT 3PPEKTUBHYIO OIICHKY
YCTOHYMBOCTH CHCTEM OE30MAaCHOCTH arpOopOMBIIUICHHBIX PpeAnpusTHiA. [Ipemio-
JKCHHBIN MOXOJ TO3BOJISICT YYUTHIBATH HEONPE/ICICHHOCTh, MOJICINPOBATh CIICHA-
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PHH YIpO3 U TIOBBILIATH IaIITHBHOCTH CUCTEM 3aIIUTHI. [IpakTHieckas 3Ha9MMOCThb
pabOoTHI 3aKIIF0YACTCS B BOSMOKHOCTH IMPHMCHEHUS pa3pabOTaHHBIX MOJeei s
COBEPLICHCTBOBAHUS CTPATeruil 3amuThl HHYPACTPYKTYPHI, HOBBILICHUS YPOB-
Hsl MHPOPMAIIMOHHOM 1 Pu3nyecKoit 6e30MmacHOCTH U 00eCeYeHUsT CTaOUIILHOTO
(YHKIMOHUPOBAHUS MPEANIPUSITUN B YCIOBUIX HEONPEACICHHOCTH.

KiroueBrnle cjioBa: UHTCJJICKTYaJIbHbIC MOACIIN,; OPTaHNU3aAlIUOHHBIC CUCTEMBI;
OLICHKA YCTOWYNBOCTH; HEUETKHE KOTHUTUBHBIE KapThI; MOIIEPIKKA IPUHSATHS pe-
[IEHWI; HCKYCCTBEHHBIA HHTEIICKT

Js nurupoBanus. JJyoposuna, A. M. (2025). MurennekTyaabHble MOAEIH
1 OLIEHKA YCTOWYNBOCTH CHCTEMBI O€30ITaCHOCTH arpoNpOMBIIIICHHBIX TPEIIPH-
situid. Siberian Journal of Life Sciences and Agriculture, 17(6-2), 361-375. https://
doi.org/10.12731/2658-6649-2025-17-6-2-1554

Introduction

In the current era of digital transformation, maintaining stable and resilient
organizational security systems has become a crucial research focus. Agricul-
tural enterprises, in particular, rely on complex information and communication
infrastructures to manage production, logistics, and financial flows. The vulner-
ability of such infrastructures to cyber threats, technological failures, and orga-
nizational risks directly affects the resilience of enterprises and, consequently,
national food security.

Traditional approaches to assessing the resilience of security systems often rely
on static risk assessment methods or formalized checklists that fail to capture the
dynamics and interdependencies of security-related processes. These methods fre-
quently overlook the impact of latent factors, the ambiguity of expert judgments,
and the nonlinear nature of cause-and-effect relationships in complex organizational
systems. As a result, decision-makers may receive incomplete or distorted informa-
tion, thereby reducing the effectiveness of management strategies.

Purpose. The aim of this study is to develop and validate a fuzzy cognitive
map (FCM)-based model for a quantitative evaluation of the resilience of se-
curity systems in agricultural enterprises. The study places particular emphasis
on the integration of expert knowledge, scenario modeling, and dynamic visu-
alization of system behavior.

The main objectives of the research are as follows:

» Identification and formalization of the most significant concepts deter-

mining the security of agricultural enterprises

» Construction of a fuzzy cognitive map reflecting causal relationships

among the selected concepts
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* Assessment of security system resilience under various scenarios and
identification of critical risk factors

To address these objectives, modern mathematical and computational mod-
els were employed, including fuzzy logic, cognitive modeling, and simulation
techniques. Among them, fuzzy cognitive maps represent a powerful tool for
analyzing the structural and dynamic properties of security systems. FCMs en-
able the integration of quantitative indicators with qualitative expert judgments,
thereby capturing uncertainty and modeling causal dependencies.

Characteristics of the automated facility

The scientific novelty of this work lies in the development of a methodolog-
ical framework that combines cognitive modeling with fuzzy inference methods
for assessing the resilience of organizational security systems. Unlike traditional
static models, the proposed approach enables scenario analysis, incorporates
uncertainty in expert assessments, and provides dynamic visualization of secu-
rity system behavior in the agro-industrial sector.

The expected scientific results of the research include the development and
expansion of the methodological framework for risk analysis and management
in the fields of information security and organizational management. The main
practical result of this work is the creation of an adaptive model applicable in
subject areas characterized by a high degree of uncertainty and the presence of
complex systemic relationships between elements.

Literature review

Assessing the stability of systems is a key problem in modern management
theory and applied computer science. The management systems of agro-indus-
trial enterprises are very complex and are characterized by a high degree of
uncertainty and a multitude of interrelated factors.

In studies [1-3], methods for constructing cognitive maps to model complex
systems explored, with particular attention given to the interaction between or-
ganizational and technological factors. Fuzzy cognitive maps (FCMs), originally
proposed by B. Kosko, have found broad application in describing systems char-
acterized by weakly structured relationships and subjective expert evaluations.

In works [4-5], FCMs were applied to model risk management and informa-
tion security processes. Such models allow for the incorporation of uncertainty
in source data, which is particularly relevant under dynamic external influences
on agro-industrial enterprises (e.g., changes in economic conditions, resource
price fluctuations, and climate risks).
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Recent studies [6-8] also highlight the role of intelligent data analysis meth-
ods, including machine learning, expert systems, and hybrid models. Howev-
er, specialized methods for the agro-industrial sector remain underdeveloped,
where system resilience depends not only on technological but also on organi-
zational and economic factors.

Therefore, the use of FCMs in combination with scenario modeling tools
represents a promising direction for assessing the resilience of security systems
in agro-industrial enterprises.

Research methods

In the framework of assessing the resilience of security systems in agro-in-
dustrial enterprises, an intelligent methodology was developed based on the ap-
plication of fuzzy cognitive maps (FCMs) and dynamic simulation algorithms.
This approach makes it possible to account for environmental uncertainty, the
human factor, and nonlinear interactions among system components.

Statement of the problem

The primary task was to formalize a model of the enterprise’s security sys-
tem by identifying key concepts and establishing causal relationships between
them. The following basic concepts were considered:

» Organizational resilience (availability of policies and security regula-

tions)

» Technical protection (level of information infrastructure security)

» Personnel security (staff training and qualification levels)

» Financial resilience (resource support for protective measures)

» External threats (cyberattacks, economic sanctions, environmental risks)

Dynamic simulation algorithm

The system dynamics were described using an iterative equation.

C(t+l):f(c(t)W) (1)

where:

* C(t) — vector of concept values at step t

* W — weight matrix

* f(x) — activation function (sigmoid normalization was applied)

This allowed the modeling of various scenarios such as intensification of exter-
nal threats, reduction in financial support, and improvement of personnel training.

Software implementation

In the experimental part, Python scripts were developed to verify the correct-
ness of calculations and to visualize the dynamics of concepts. The algorithm
consisted of seven stages:
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* Data loading and preprocessing — the built-in Breast Cancer Wiscon-
sin dataset from scikit-learn was used; features included morphological
characteristics, with balanced and structured data

» Correlation analysis — a correlation matrix of features was generated

(Fig. 1)

» Data splitting — 70% of the data were used for training and 30% for
testing

* Model training — Logistic Regression (linear model), Random Forest
(ensemble of trees), and XGBoost (gradient boosting) were employed

*  ROC analysis (Fig. 2) — ROC curves for all models were plotted and
AUC (area under the curve) was computed

* Feature importance analysis — the top 10 features were extracted for
Random Forest and XGBoost

* Performance evaluation — precision, recall, and F1-score were calculated
for each model
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. 1. Feature correlation analysis

The heatmap illustrates the correlation analysis of features in the Breast Can-
cer Dataset (sklearn). Strong correlations were observed among feature groups:

* mean radius, mean perimeter, and mean area (coefficients > 0.9)

* worst radius, worst perimeter, and worst area

» Features related to concavity and concave points (mean, worst).

Many features exhibit redundancy (e.g., mean radius and worst radius),
which is critical since excessive correlation may hinder interpretability and af-
fect the stability of linear algorithms (e.g., logistic regression).
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Conversely, parameters such as texture error, smoothness error, and fractal
dimension error demonstrated weak correlations with other features, indicating
their unique contribution.

For models sensitive to multicollinearity (e.g., logistic regression), feature
selection methods such as PCA or regularization are beneficial. For tree-based
models (Random Forest, XGBoost), multicollinearity is less critical, though
strong feature groups still influence feature importance distributions.
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Fig. 2. ROC curves for intelligent models

Figure 2 presents ROC curves for the three models (Logistic Regression,
Random Forest, and XGBoost) in the breast cancer classification task. All three
models achieved AUC = 1.00, corresponding to maximum classification per-
formance. The black dashed line (“Random Guess”) represents the baseline
(AUC =0.5).

The models significantly outperformed random guessing, confirming the
informativeness of the features and the adequacy of the chosen models. With
an AUC of 1.0, the models exhibited no classification errors: the True Positive
Rate reached 1 at nearly zero False Positive Rate.

This outcome, while rare, may indicate either an exceptionally clean dataset
with well-separated classes or potential overfitting (especially if the test set is
small or feature correlations are high) (Fig. 3).
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Fig. 3. ROC curves for intelligent models on the dataset

The high performance indicators of classification models, visualized through
ROC curves (Figure 3), are interpreted ambiguously. While this result is de-
sirable and may indicate a representative dataset with well-separated classes,
it also raises a red flag indicating potential overfitting. This phenomenon is es-
pecially likely when using a small amount of test data or when there are signs
of multicollinearity. Thus, to verify the result, it is necessary to use additional
diagnostic methods in order to eliminate modeling artifacts and confirm result
validity.

Experimental results
To evaluate the effectiveness of the developed intelligent model of security
system resilience for agro-industrial enterprises, a series of simulation experi-
ments was conducted for a representative enterprise characterized by a branched
management structure and a high number of critical processes. The initial data
included expert assessments of risk probabilities as well as monitoring data of
production and management processes.
The experimental methodology comprised the following steps:
* Construction of a FCM including the key concepts: financial stability,
human resource potential, technological reliability, information security,
and environmental safety
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*  Development of scenario-based simulations incorporating three manage-
ment strategies were tested: Scenario 1 — maintaining of the current level
of security, Scenario 2 — strengthening of information security through the
introduction of additional monitoring technologies, Scenario 3 — integration
of a comprehensive model considering the interaction of all critical factors

*  The results demonstrated the following patterns: under Scenario 1 (base-
line), the system exhibited a gradual decline in resilience caused by the
accumulation of technological and personnel-related risks, in Scenario 2, a
temporary increase in resilience was observed due to enhanced information
security; however, the absence of a systemic approach led to a rapid rise in
vulnerabilities in other areas, under Scenario 3 (integrated model), the high-
est level of resilience was achieved owing to the balanced distribution of
protective measures, ensuring adaptability and effective crisis prevention

* The dynamics illustrated in Figures 4-5 indicated that the integration of
the intelligent model increased system resilience by 15-20% compared
to partial reinforcement strategies.
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Fig. 4. Feature importance by Random Forest
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Random Forest analysis (Fig. 4) emphasized the relevance of geomet-
rical characteristics such as mean concave points, worst concave points,
worst perimeter, worst area, worst radius, distributing feature importance
relatively evenly across several attributes. Conversely, XGBoost (Fig. 5)
demonstrated a high dependency on mean concave points (over 50% con-
tribution), indicating a more focused but potentially less generalizable clas-
sification. Both models consistently confirmed the critical importance of
contour concavity parameters, although Random Forest demonstrated higher
robustness to noise, while XGBoost achieved greater precision with a risk
of overfitting.

A series of scenario simulations was carried out using the IGLA software
package, where the following key concepts were modeled: Information Securi-
ty (IS), Financial Stability (FS), Human Resources (HR), Technical Protection
(TP), and Organizational Processes (OP). Disturbance factors (external threats,
internal risks) were varied within the interval [—1,+1].

Table 1.
Dynamics of the integral security system resilience index
Scenario Initial | Iteration | Iteration| Final | Resilience
state 3 5 state rating
Baseline (no threats) 0.72 0.74 0.75 0.76 High
Moderate threats 0.72 0.65 0.61 0.59 Medium

Strong threats 0.72 0.52 0.45 0.41 Low
Security reinforcement 0.72 0.70 0.73 0.78 High
Workforce deficit 0.72 0.60 0.55 0.51 Low

The results highlight the following:
» Under strong threats, system resilience declines sharply
» Reinforced security compensates for negative impacts, even exceeding
baseline levels
»  Workforce shortages result in gradual degradation, underscoring the crit-
ical role of the human factor
Model classification performance was assessed using standard metrics (pre-
cision, recall, F1-score, accuracy). XGBoost achieved Accuracy =0.96 and F1-
score = 0.96—0.97 (Table 2), though it showed signs of overfitting and reduced
balance between precision and recall.
Random Forest achieved an accuracy of 0.97 and Fl-score = 0.97-0.98
(Table 3), performing slightly worse in recall for class «0», but excelling in
detecting class “0” / “1”.
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Table 2.
XGBoost
Precision Recall F1-score Support
0 0.94 0.97 0.95 63
1 0.98 0.96 0.97 108
Accuracy 0.96 171
Macro avg 0.96 0.97 0.96 171
Weighted avg 0.97 0.96 0.97 171
Table 3.
Random Forest
Precision Recall F1-score Support
0 0.98 0.94 0.96 63
1 0.96 0.99 0.98 108
Accuracy 0.97 171
Macro avg 0.97 0.96 0.97 171
Weighted avg 0.97 0.97 0.97 171

Logistic Regression demonstrated the most balanced results, with Accu-
racy = 0.98 and an F1-score of 0.97-0.98 (Table 4), confirming its reliability
and stability.

Table 4.
Logistic Regression
Precision Recall F1-score Support

0 0.97 0.97 0.97 63

1 0.98 0.98 0.98 108
Accuracy 0.98 171
Macro avg 0.97 0.97 0.97 171
Weighted avg 0.98 0.98 0.98 171

All three models demonstrated high levels of accuracy and robustness, with
only minor differences in performance. Logistic Regression proved to be the most
balanced and reliable model for resilience assessment under the studied conditions.
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