Multiantagonistic of Streptomyces narbonensis strain PSM242 and Trichoderma sp. biocide combined in enrich media against Meloidogyne sp. root‑knot nematode on cherry tomato plants

  • Penta Suryaminarsih Universitas Pembangunan Nasional Veteran Jawa Timur
  • Safira Rizka Lestari Universitas Pembangunan Nasional Veteran Jawa Timur

Аннотация

The research focuses on the isolation and identification of Streptomyces and Meloidogyne species from soil and plant samples, particularly in oil palm plantations and tomato crops. Using the soil plating method, two Streptomyces isolates were obtained, identified as Streptomyces narbonensis through molecular techniques targeting the 16S rRNA gene. Concurrently, root-knot nematodes (Meloidogyne sp.) were extracted from symptomatic tomato plants using a modified Baerman apparatus, with morphological characteristics confirming their identity. The study further evaluates the biocontrol potential of S. narbonensis strain PSM242 and Trichoderma sp. against Meloidogyne sp. through both in vitro and field experiments. Results indicate that these biocontrol agents significantly reduce nematode populations and root gall formation, leading to enhanced growth metrics in cherry tomato plants. A factorial randomized block design was employed for data analysis, revealing that the combination of S. narbonensis and Trichoderma sp. in nutrient-enriched media yielded optimal results in controlling nematodes. Statistical analyses demonstrated that treatments combining both biocontrol agents resulted in the lowest gall diameter, weight, and juvenile nematode populations compared to controls. Additionally, significant improvements in root length and fruit weight were observed in treated plants. This research underscores the potential of utilizing microbial antagonists as sustainable alternatives for managing agricultural pests, contributing to more effective pest control strategies in crop production systems.

EDN: TQLSFD

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Penta Suryaminarsih, Universitas Pembangunan Nasional Veteran Jawa Timur

Associate Professor, Plant Pest and Disease, Department Agrotechnology, Dr. of Phytopathology

Safira Rizka Lestari, Universitas Pembangunan Nasional Veteran Jawa Timur

Assistant Professor, Plant Pest and Disease, Department Agrotechnology, Dr. Candidate of Phytopathology

Литература

Pontes, K. B., et al. (2024). Efficacy of microbiological nematicides in controlling root knot nematodes in tomato. Frontiers in Agronomy, 6. https://doi.org/10.3389/fagro.2024.1462323. EDN: https://elibrary.ru/JLEPOM

Yigezu Wendimu, G. (2021). Biology, taxonomy, and management of the root knot nematode (Meloidogyne incognita) in sweet potato. Advances in Agriculture, 2021. https://doi.org/10.1155/2021/8820211. EDN: https://elibrary.ru/IIJGDI

Saleh, H. M., Shafeeq, A. F., & Khairi, M. A. (2023). Short communication: Biological control of Meloidogyne javanica by Pasteuria penetrans and Trichoderma harzianum on tomato plants. Biodiversitas, 24(2), 847–851. https://doi.org/10.13057/biodiv/d240221

Puyam, A. (2016). Advent of Trichoderma as a bio control agent — a review. Retrieved from: www.ansfoundation.org

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1160551. EDN: https://elibrary.ru/MRQFOV

Kang, M. K., et al. (2021). Nematicidal activity of teleocidin B4 isolated from Streptomyces sp. against pine wood nematode, Bursaphelenchus xylophilus. Pest Management Science, 77(4), 1607–1615. https://doi.org/10.1002/ps.6095. EDN: https://elibrary.ru/YXAVID

Sharma, N., Manhas, R. K., & Ohri, P. (2022). Streptomyces hydrogenans strain DH 16 alleviates negative impact of Meloidogyne incognita stress by modifying physio biochemical attributes in Solanum lycopersicum plants. Scientific Reports, 12(1), 15214. https://doi.org/10.1038/s41598-022-19636-0. EDN: https://elibrary.ru/OJSAUR

Suryaminarsih, P., Mindari, W., Wijayanti, F., & Kusuma, R. M. (2022). The competence of Streptomyces narbonensis and Trichoderma harzianum mixed as PGPM and decomposer on different types of soils. International Journal of Plant and Soil Science, 158–165. https://doi.org/10.9734/ijpss/2022/v34i1831067. EDN: https://elibrary.ru/LCUCDM

Rostami, M., Shahbazi, S., Soleimani, R., & Ghorbani, A. (2024). Optimizing sustainable control of Meloidogyne javanica in tomato plants through gamma radiation induced mutants of Trichoderma harzianum and Bacillus velezensis. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-68365-z. EDN: https://elibrary.ru/LKWTXF

Mohiddin, F. A., et al. (2021). Phylogeny and optimization of Trichoderma harzianum for chitinase production: Evaluation of their antifungal behaviour against the prominent soil borne phytopathogens of temperate India. Microorganisms, 9(9). https://doi.org/10.3390/microorganisms9091962. EDN: https://elibrary.ru/KMNPQO

Rosyida, R., Martosudiro, M., & Muhibuddin, A. (2Desktop). Analysis of chitinase enzyme Trichoderma sp. in degrading Fusarium oxysporum. Research Journal of Life Science, 9(3), 131–145. https://doi.org/10.21776/ub.rjls.2022.009.03.5. EDN: https://elibrary.ru/GLGOFJ

Indriyanti, D. R., Bintari, S. H., Setiati, N., & Alfiyan, J. M. Z. (2021). The density and viability of Metarhizium anisopliae conidia on several growth media. Biosaintifika, 13(2), 237–242. https://doi.org/10.15294/biosaintifika.v13i2.31408. EDN: https://elibrary.ru/DFBSBO

Pasternak, T. P., & Steinmacher, D. (2024). Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2). https://doi.org/10.3390/plants13020327. EDN: https://elibrary.ru/UMAJOM

Lee, H.-B., et al. (2005). Study on medium ingredient composition for enhancing biomass production and anti potato common scab activity of Streptomyces sp. A020645 as a BCA candidate. Research in Plant Disease, 11(1), 66–71. https://doi.org/10.5423/rpd.2005.11.1.066

Asyiah, I. N., et al. (2021). Cost effective bacteria based bionematicide formula to control root knot nematode Meloidogyne spp. in tomato plants. Biodiversitas, 22(6), 3256–3264. https://doi.org/10.13057/BIODIV/D220630. EDN: https://elibrary.ru/YLJFFD

Stetina, S. R., Mcgawley, E. C., & Russin, J. S. (1997). Extraction of root associated Meloidogyne incognita and Rotylenchulus reniformis.

Gómez González, G., et al. (2021). Meloidogyne enterolobii egg extraction in NaOCl versus infectivity of inoculum on cucumber. Journal of Nematology, 53. https://doi.org/10.21307/JOFNEM-2021-057. EDN: https://elibrary.ru/UWEYNG

Rahmawati, D., et al. (2016). Seminar Hasil Penelitian dan Pengabdian Masyarakat Dana BOPTN Tahun.

Xiang, N., & Lawrence, K. S. (2016). Optimization of in vitro techniques for distinguishing between live and dead second stage juveniles of Heterodera glycines and Meloidogyne incognita. PLOS ONE, 11(5). https://doi.org/10.1371/journal.pone.0154818

Adiwena, M., et al. (2023). Effect of micronutrient enriched media on the efficacy of Bacillus subtilis as a biological control agent against Meloidogyne incognita. Biodiversitas, 24(1), 33–39. https://doi.org/10.13057/biodiv/d240105. EDN: https://elibrary.ru/TKSCAO

Cao, Y., et al. (2023). Root knot nematode infections and soil characteristics significantly affected microbial community composition and assembly of tobacco soil microbiota: A large scale comparison in tobacco growing areas. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1282609. EDN: https://elibrary.ru/MCGLXV

Poveda, J., Abril Urias, P., & Escobar, C. (2020). Biological control of plant parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00992. EDN: https://elibrary.ru/WSWUDU

Ayaz, M., et al. (2024). Biocontrol of plant parasitic nematodes by bacteria and fungi: A multi omics approach for the exploration of novel nematicides in sustainable agriculture. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1433716. EDN: https://elibrary.ru/BUMJNO

Sharon, E., Bar Eyal, M., Chet, I., Herrera Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of the root knot nematode Meloidogyne javanica by Trichoderma harzianum.

Al Hazmi, A. S., & Javeed, M. T. (2016). Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi Journal of Biological Sciences, 23(2), 288–292. https://doi.org/10.1016/j.sjbs.2015.04.007

Rostami, M., Shahbazi, S., Soleimani, R., & Ghorbani, A. (2024). Optimizing sustainable control of Meloidogyne javanica in tomato plants through gamma radiation induced mutants of Trichoderma harzianum and Bacillus velezensis. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-68365-z. EDN: https://elibrary.ru/LKWTXF

Sharma, N., et al. (2020). Insights into the role of Streptomyces hydrogenans as the plant growth promoter, photosynthetic pigment enhancer and biocontrol agent against Meloidogyne incognita in Solanum lycopersicum seedlings. Plants, 9(9), 1–18. https://doi.org/10.3390/plants9091109. EDN: https://elibrary.ru/LUPQJL

Park, E. J., et al. (2020). Evaluation of nematicidal activity of Streptomyces yatensis KRA 28 against Meloidogyne incognita. Journal of Microbiology and Biotechnology, 30(5), 700–707. https://doi.org/10.4014/jmb.1908.08038. EDN: https://elibrary.ru/LISEMJ

Silva, G. da C., Kitano, I. T., Ribeiro, I. A. de F., & Lacava, P. T. (2022). The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Frontiers in Soil Science, 2. https://doi.org/10.3389/fsoil.2022.833181

Ran, Y., Zhang, Y., Wang, X., & Li, G. (2022). Nematicidal metabolites from the actinomycete Micromonospora sp. WH06. Microorganisms, 10(11). https://doi.org/10.3390/microorganisms10112274. EDN: https://elibrary.ru/ETFIDY

Wahyudi, A. T., Priyanto, J. A., Fijrina, H. N., Mariastuti, H. D., & Nawangsih, A. A. (2019). Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas, 20(9), 2547–2553. https://doi.org/10.13057/biodiv/d200916

Omar, A. F., Abdelmageed, A. H. A., Al Turki, A., Abdelhameid, N. M., Sayyed, R. Z., & Rehan, M. (2022). Exploring the plant growth promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plants, 11(23). https://doi.org/10.3390/plants11233316. EDN: https://elibrary.ru/CFMVGB

Xu, L., Xu, W., Jiang, Y., Hu, F., & Li, H. (2015). Effects of interactions of auxin producing bacteria and bacterial feeding nematodes on regulation of peanut growths. PLOS ONE, 10(4). https://doi.org/10.1371/journal.pone.0124361. EDN: https://elibrary.ru/XQDFUH

Sachman Ruíz, B., et al. (2022). Nematicidal, acaricidal and plant growth promoting activity of Enterobacter endophytic strains and identification of genes associated with these biological activities in the genomes. Plants, 11(22). https://doi.org/10.3390/plants11223136. EDN: https://elibrary.ru/ESDKPI

Chouyia, F. E., Ventorino, V., & Pepe, O. (2022). Diversity, mechanisms and beneficial features of phosphate solubilizing Streptomyces in sustainable agriculture: A review. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1035358. EDN: https://elibrary.ru/LZDCCT

Hu, H., Gao, Y., Li, X., Chen, S., Yan, S., & Tian, X. (2020). Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2. Phytopathology, 110(2), 336–344. https://doi.org/10.1094/PHYTO-05-19-0164-R. EDN: https://elibrary.ru/NWZSSR

Geng, C., et al. (2016). A novel serine protease, Sep1, from Bacillus firmus DS 1 has nematicidal activity and degrades multiple intestinal associated nematode proteins. Scientific Reports, 6. https://doi.org/10.1038/srep25012

Razzaq, A., et al. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00110. EDN: https://elibrary.ru/RBPIMS

Lathro Anselme, A., Brou Roger, K., Grodji Albarin, G., Tacra Thierry, L., Konan Jean Louis, K., & Konan Jean, K. (2019). Essentials minerals in coconut water sugars from five coconuts (Cocos nucifera L.) varieties cultivated in Côte d’Ivoire. American Journal of Food and Nutrition, 7(3), 88–93. https://doi.org/10.12691/ajfn-7-3-3

Zhang, Y., et al. (2024). Chemical components, nutritional value, volatile organic compounds and biological activities in vitro of coconut (Cocos nucifera L.) water with different maturities. Foods, 13(6). https://doi.org/10.3390/foods13060863. EDN: https://elibrary.ru/IYYPQG

Murthy, N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase producing microorganisms.

Sasi, A., Duraipandiyan, N., Marikani, K., Dhanasekaran, S., Al Dayan, N., & Venugopal, D. (2020). Identification and characterization of a newly isolated chitinase producing strain Bacillus licheniformis SSCL 10 for chitin degradation. Archaea, 2020. https://doi.org/10.1155/2020/8844811. EDN: https://elibrary.ru/KZHQUM

Gonfa, T. G., Negessa, A. K., & Bulto, A. O. (2023). Isolation, screening, and identification of chitinase producing bacterial strains from riverbank soils at Ambo, Western Ethiopia. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21643. EDN: https://elibrary.ru/PLLXTO

Chen, L., et al. (2015). Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 5. https://doi.org/10.1038/srep14395

Nawaal, N., Guniarti, G., Moeljani, I. R., & Suryaminarsih, P. (2022). Application of Streptomyces sp. and Trichoderma sp. for promoting generative plants growth of cherry tomato (Lycopersicum cerasiformae Mill.). Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 10(2), 126–131. https://doi.org/10.18196/pt.v10i2.11706. EDN: https://elibrary.ru/ELWGTM

Vinod Kumar, N., Subha Rajam, K., & Esther Rani, M. (2017). Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi — Trichoderma viride VKF3. International Journal of Current Microbiology and Applied Sciences, 6(11), 2692–2701. https://doi.org/10.20546/ijcmas.2017.611.317

Sari, M., Nawangsih, A. A., & Wahyudi, A. T. (2021). Rhizosphere Streptomyces formulas as the biological control agent of phytopathogenic fungi Fusarium oxysporum and plant growth promoter of soybean. Biodiversitas, 22(6), 3015–3023. https://doi.org/10.13057/biodiv/d220602. EDN: https://elibrary.ru/ZXAYPO

Devi, V. V., Rani, K. C. M. E., Asaph, R. S., Suresh, P., Gomathinayagam, S., & Shanmugaiah, V. (2024). Prevalent plant growth hormone indole 3 acetic acid produced by Streptomyces sp. VSMKU1027 and its potential antifungal activity against phytofungal pathogens. Journal of Pure and Applied Microbiology, 18(4), 2721–2733. https://doi.org/10.22207/JPAM.18.4.45. EDN: https://elibrary.ru/KYMBID

Nafady, N. A., et al. (2022). Effective and promising strategy in management of tomato root knot nematodes by Trichoderma harzianum and arbuscular mycorrhizae. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020315. EDN: https://elibrary.ru/SUSSGN

Dhayal, R., et al. (2023). In vitro evaluation of bio agents on hatching and mortality of root knot nematode, Meloidogyne javanica. Biological Forum — An International Journal, 15(8), 357.

Pontes, K. B., et al. (2024). Efficacy of microbiological nematicides in controlling root knot nematodes in tomato. Frontiers in Agronomy, 6. https://doi.org/10.3389/fagro.2024.1462323. EDN: https://elibrary.ru/JLEPOM


Просмотров аннотации: 124

Опубликован
2025-10-31
Как цитировать
Suryaminarsih, P., & Lestari, S. R. (2025). Multiantagonistic of Streptomyces narbonensis strain PSM242 and Trichoderma sp. biocide combined in enrich media against Meloidogyne sp. root‑knot nematode on cherry tomato plants. Siberian Journal of Life Sciences and Agriculture, 17(4), 250-268. https://doi.org/10.12731/2658-6649-2025-17-4-1100
Раздел
Земледелие и защита растений