Использование индекса ICE для спутникового мониторинга ирригационных массивов и состояния земель

Ключевые слова: охлаждающий эффект ирригации, MODIS, NDVI, LST, орошение посевов, спутниковый мониторинг посевов

Аннотация

Обоснование. В мире около половины сельскохозяйственных культур возделывается при орошении, которое оказывает влияние на климат полей, а также может повышать комфортность окружающей среды для человека. Развитие спутниковых технологий открыло возможности оперативного и низкозатратного мониторинга охлаждающего эффекта орошения Irrigation Cooling Effect (ICE). Это направление исследований проходит стадию становления, что предопределяет актуальность выявления текущего тренда его развития.

Цель. Провести анализ научной литературы в области использования спутникового индекса ICE для мониторинга орошаемых земель, выявить основные направления развития и научные центры.

Материалы и методы. В качестве основного источника информации использовались сведения наукометрических баз данных Scopus и РИНЦ. На конкретном примере показана связь ICE с NDVI для орошаемого массива СУАР в КНР.

Результаты. Анализ первоисточников показал, что в настоящее время ICE используется в основном для оценки охлаждающего эффекта орошения посевов и их водопотребления, охлаждающего эффекта растительности городов, для оценки влияния смены наземного покрова на локальный и региональный климат. Основными центрами исследований являются научные организации Китая и США, что подтверждается количеством научных публикаций и их цитируемостью. Перспективным направлением является использование ICE для оперативного спутникового мониторинга посевов (в том числе и неорошаемых).

Заключение. Таким образом, ICE может рассматриваться как полезное дополнение к обычно используемому при спутниковом мониторинге посевов индексу NDVI, что обуславливает все более широкое использование данного индекса в мире, особенно для мониторинга орошаемых земель.

EDN: UWOZGV

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Igor Yu. Savin, Федеральный исследовательский центр «Почвенный институт им. В.В. Докучаева»

академик РАН, д-р с.-х. наук, главный научный сотрудник

Alexey G. Terekhov, Институт информационных и вычислительных технологий МОН

кандидат технических наук, ведущий научный сотрудник

Ravil I. Mukhamediev, Казахский Научно-Исследовательский Технический Университет им. К.И. Сатпаева

доктор технических наук, профессор

Литература

Абаев, Н. Н., Сагатдинова, Г. Н., Маглинец, Ю. А., Амиргалиев, Е. Н., Савин, И. Ю., & Терехов, А. Г. (2023). Спутниковый мониторинг зимней промывки пашни от вторичного засоления на примере ирригационного массива «Голодная степь» (Казахстан). Современные проблемы дистанционного зондирования Земли из космоса, 20(3), 152-163. https://doi.org/10.21046/2070-7401-2023-20-3-152-163 EDN: https://elibrary.ru/GWEJTE

Савин, И. Ю. (2020). Пространственные аспекты прикладного почвоведения. Бюллетень Почвенного института имени В.В. Докучаева, 101, 5-18. https://doi.org/10.19047/0136-1694-2020-101-5-18 EDN: https://elibrary.ru/XOVGZT

Скворцов, А. А. (1964). Орошение сельскохозяйственных полей и микроклимат. Л.: ГИМИЗ, 277 с.

Терехов, А. Г. (2020). Спутниковая диагностика изменений сельскохозяйственного водообеспечения Синьцзян-Уйгурского автономного района КНР на основе эффекта охлаждения поверхности пашни при ирригации по данным 2002-2019 гг. Современные проблемы дистанционного зондирования Земли из космоса, 17(7), 131-141. https://doi.org/10.21046/2070-7401-2020-17-7-131-141 EDN: https://elibrary.ru/MTQRDA

Терехов, А. Г., Абаев, Н. Н., Маглинец, Ю. А. (2021). Спутниковый мониторинг состояния оазисов реки Амударьи в период 2003-2020 гг. на основе анализа эффекта охлаждения территорий в результате их ирригации. Современные проблемы дистанционного зондирования Земли из космоса, 18(5), 123-132. https://doi.org/10.21046/2070-7401-2021-18-5-123-132 EDN: https://elibrary.ru/VVWEGH

Akinyemi, F. O., Ikanyeng, M., & Muro, J. (2019). Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City and Environment Interactions, 4, 100029. https://doi.org/10.1016/j.cacint.2020.100029 EDN: https://elibrary.ru/QDKYQU

Albaladejo-García, J. A., Alcon, F., & Martínez-Paz, J. M. (2020). The Irrigation Cooling Effect as a Climate Regulation Service of Agroecosystems. Water, 12, 1553. https://doi.org/10.3390/w12061553 EDN: https://elibrary.ru/DZTZTW

Allen, M. A., Roberts, D. A., & McFadden, J. P. (2021). Reduced urban green cover and daytime cooling capacity during the 2012-2016 California drought. Urban Climate, 36, 100768. https://doi.org/10.1016/j.uclim.2020.100768 EDN: https://elibrary.ru/RRXUZZ

Asrar, G., Fuchs, M., Kanemasu, E. T., & Hatfield, J. L. (1984). Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agron. J., 76, 300-306. https://doi.org/10.2134/agronj1984.00021962007600020029x

Batchelor, C., Hoogeveen, J., Faurès, J. M., & Peiser, L. (2016). Water accounting and auditing - A sourcebook. FAO WATER REPORTS 43. Rome: FAO, 232 p.

Chen, P. Y., Fedosejevs, G., Tiscareño-LóPez, M., & Arnold, J. G. (2006). Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environ Monit Assess, 119, 69-82. https://doi.org/10.1007/s10661-005-9006-7 EDN: https://elibrary.ru/ITUORM

Coleman, R. W., Stavros, N., Hulley, G., & Parazoo, N. (2020). Comparison of thermal infrared-derived maps of irrigated and non-irrigated vegetation in urban and non-urban areas of southern California. Remote Sensing, 12(24), 4102. https://doi.org/10.3390/rs12244102 EDN: https://elibrary.ru/VGPQQE

Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett., 4, 035006. https://doi.org/10.1088/1748-9326/4/3/035006 EDN: https://elibrary.ru/OMQJVH

Dong, J., Pang, Z., Lin, S., Zhang, X., Xie, Z., Ren, P., Zhang, X., & Yuan, W. (2024). Cotton lands induced cooling effect on land surface temperature in Xinjiang, China. Agricultural and Forest Meteorology, 351, 110004. https://doi.org/10.1016/j.agrformet.2024.110004 EDN: https://elibrary.ru/BAUECQ

Fischer, G., van Velthuizen, H. T., Shah, M. M., & Nachtergaele, F. O. (2002). Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report. IIASA, Laxenburg, Austria: RR-02-02, 155 p.

Gao, K., Santamouris, M., & Feng, J. (2020). On the cooling potential of irrigation to mitigate urban heat island. Sci. Total Environ., 740, 139754. https://doi.org/10.1016/j.scitotenv.2020.139754 EDN: https://elibrary.ru/IYNCII

Hou, M., Tian, F., Zhang, T., & Huang, M. (2019). Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag., 222, 182-192. https://doi.org/10.1016/j.agwat.2019.06.005

Hou, M., Zhao, L., & Lin, A. (2023). Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method. Remote Sens., 15, 4571. https://doi.org/10.3390/rs15184571 EDN: https://elibrary.ru/NYVFOZ

Kucera, D., & Jenerette, G. D. (2023). Urban greenness and its cooling effects are influenced by changes in drought, physiography, and socio-demographics in Los Angeles, CA. Urban Climate, 52, 101743. https://doi.org/10.1016/j.uclim.2023.101743 EDN: https://elibrary.ru/PKGLZP

Kueppers, L. M., Snyder, M. A., & Sloan, L. C. (2007). Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703. https://doi.org/10.1029/2006GL028679

Lawston, P. M., Santanello, J. A., Jr., Hanson, B., & Arsensault, K. (2020). Impacts of irrigation on summertime temperatures in the pacific northwest. Earth Interactions, 24(1), 1. https://doi.org/10.1175/ei-d-19-0015.1 EDN: https://elibrary.ru/BQTKUO

Li, D., Chen, Y., Hu, T., Cui, Y., Luo, Y., Luo, H., & Meng, Q. (2020). Climate changes in the Lhasa River basin, Tibetan Plateau: Irrigation induced cooling along with a warming trend. Theor. Appl. Climatol., 140, 1043-1054. https://doi.org/10.1007/s00704-020-03146-y EDN: https://elibrary.ru/MLEQAS

Li, M. (2024). Research on the effects of extreme heat exposure on human health. Theoretical and Natural Science, 29, 194-199. https://doi.org/10.54254/2753-8818/29/20240777 EDN: https://elibrary.ru/BQKVKA

Li, Y., Guan, K., Peng, B., Franz, T. E., Wardlow, B., & Pan, M. (2020). Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology, 26(5), 3065-3078. https://doi.org/10.1111/gcb.15002 EDN: https://elibrary.ru/UQBZXM

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, S., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B.-H., Yan, G., & Zhou, C. (2022). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics., 61, e2022RG000777. https://doi.org/10.1029/2022RG000777 EDN: https://elibrary.ru/YASDOG

Lin, Y., Li, X., Zhang, T., Chao, N., Yu, J., Cai, J., & Sneeuw, N. (2020). Water Volume Variations Estimation and Analysis Using Multisource Satellite Data: A Case Study of Lake Victoria. Remote Sensing, 12(18), 3052. https://doi.org/10.3390/rs12183052 EDN: https://elibrary.ru/OYXBLN

Liu, J., Jin, J., & Niu, G.-Y. (2021). Effects of Irrigation on Seasonal and Annual Temperature and Precipitation over China Simulated by the WRF Model. Journal of Geophysical Research: Atmospheres, 126(10), e2020JD034222. https://doi.org/10.1029/2020jd034222 EDN: https://elibrary.ru/CKHLTN

Liu, N., Zhao, X., Zhang, X., Zhao, J., Wang, H., & Wu, D. (2023). Remotely sensed evidence of the divergent climate impacts of wind farms on croplands and grasslands. Science of the Total Environment, 905, 167203. https://doi.org/10.1016/j.scitotenv.2023.167203 EDN: https://elibrary.ru/WMEXBO

Lobell, D. B., Bonfils, C. J., Kueppers, L. M., & Snyder, M. A. (2008). Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett., 35, L09705. https://doi.org/10.1029/2008GL034145 EDN: https://elibrary.ru/MEZNKF

Mu, T., Liu, G., Yang, X., & Yu, Y. (2023). Soil-Moisture Estimation Based on Multiple-Source Remote-Sensing Images. Remote Sensing, 15(1), 139. https://doi.org/10.3390/rs15010139 EDN: https://elibrary.ru/TSTQEM

Pan, T., Zhang, C., Kuang, W., Luo, G., Du, G., & Yin, Z. (2020). Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Science of the Total Environment, 722, 137917. https://doi.org/10.1016/j.scitotenv.2020.137917 EDN: https://elibrary.ru/VPQTHT

Shah, H. L., Zhou, T., Huang, M., & Mishra (2019). Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Basins. Journal of Geophysical Research: Atmospheres, 124(3), 1449-1462. https://doi.org/10.1029/2018JD029132

Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water Resources. Water Int., 25, 11-32. https://doi.org/10.1080/02508060008686794 EDN: https://elibrary.ru/LGHWKX

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation-A global inventory. Hydrol. Earth Syst. Sci., 14, 1863-1880. https://doi.org/10.5194/hess-14-1863-2010 EDN: https://elibrary.ru/OLGCBP

Siebert, S., Döll, P., Hoogeveen, J., Faures, J. M., Frenken, K., & Feick, S. (2005). Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535-547. https://doi.org/10.5194/hess-9-535-2005 EDN: https://elibrary.ru/LZZIDH

Tan, C.-H., Chu, T.-W., & Jao, C.-C. (2011). Cooling effect range assessment of paddy fields in urban neighborhood by Landsat thermal imagery. In 32nd Asian Conference on Remote Sensing 2011, ACRS 2011 (Vol. 3, pp. 1857-1862).

Terekhov, A., & Abayev, N. (2020). Irrigation cooling effect: Opportunities in task of estimation of international irrigation water usage in transboundary River Syrdarya basin, Central Asia. E3S Web of Conferences, 223, 02009. https://doi.org/10.1051/e3sconf/202022302009 EDN: https://elibrary.ru/EFLHOB

van Keulen, H., & Wolf, J. (1986). Modelling of agricultural production: weather, soils and crops. Wageningen: Pudoc, pp. 235-247.

Wang, Z., Vivoni, E. R., Bohn, T. J., & Wang, Z.-H. (2021). A Multiyear Assessment of Irrigation Cooling Capacity in Agricultural and Urban Settings of Central Arizona. Journal of the American Water Resources Association, 57(5), 771-788. https://doi.org/10.1111/1752-1688.12920

Yang, Q., Huang, X., & Tang, Q. (2020). Irrigation cooling effect on land surface temperature across China based on satellite observations. Science of the Total Environment, 705, 135984. https://doi.org/10.1016/j.scitotenv.2019.135984 EDN: https://elibrary.ru/DDZSII

Yang, Q., Huang, X., & Tang, Q. (2020). Global assessment of the impact of irrigation on land surface temperature. Science Bulletin, 65(17), 1440-1443. https://doi.org/10.1016/j.scib.2020.04.005 EDN: https://elibrary.ru/MRLEHK

Zhang, C., Dong, J., Leng, G., Doughty, R., Zhang, K., Han, S., Zhang, G., Zhang, X., & Ge, Q. (2023). Attenuated cooling effects with increasing water-saving irrigation: Satellite evidence from Xinjiang, China. Agricultural and Forest Meteorology, 333, 109397. https://doi.org/10.1016/j.agrformet.2023.109397 EDN: https://elibrary.ru/SZUKJF

Zhang, C., Ge, Q., Dong, J., Zhang, X., Li, Y., & Han, S. (2023). Characterizing spatial, diurnal, and seasonal patterns of agricultural irrigation expansion-induced cooling in Northwest China from 2000 to 2020. Agricultural and Forest Meteorology, 330, 109304. https://doi.org/10.1016/j.agrformet.2022.109304 EDN: https://elibrary.ru/DUVCKR

Zhang, F., Peng, K., & Zhang, F. (2022). Spatial distribution characteristics of land surface temperature and its “source-sink” effect in Yanqi Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 38(16), 153-161.

Zhang, Z., Lin, A., Zhao, L., & Zhao, B. (2022). Attribution of local land surface temperature variations response to irrigation over the North China Plain. Science of the Total Environment, 826, 154104. https://doi.org/10.1016/j.scitotenv.2022.154104 EDN: https://elibrary.ru/VVPALD

Zhu, P., & Burney, J. (2022). Untangling irrigation effects on maize water and heat stress alleviation using satellite data. Hydrology and Earth System Sciences, 26(3), 827-840. https://doi.org/10.5194/hess-26-827-2022 EDN: https://elibrary.ru/ZVSAOD

Zhu, X., Liang, S., & Pan, Y. (2012). Observational evidence of the cooling effect of agricultural irrigation in Jilin, China. Climatic Change, 114(3-4), 799-811. https://doi.org/10.1007/s10584-012-0435-3 EDN: https://elibrary.ru/HZMVUW

References

Abaev, N. N., Sagatdinova, G. N., Maglinets, Yu. A., Amirgaliiev, E. N., Savin, I. Yu., & Terekhov, A. G. (2023). Satellite monitoring of winter leaching of arable land from secondary salinization on the example of the "Golodnaya Steppe" irrigation area (Kazakhstan). Current Problems of Remote Sensing of the Earth from Space, 20(3), 152-163. https://doi.org/10.21046/2070-7401-2023-20-3-152-163 EDN: https://elibrary.ru/GWEJTE

Savin, I. Yu. (2020). Spatial aspects of applied soil science. Bulletin of the V.V. Dokuchaev Soil Institute, 101, 5-18. https://doi.org/10.19047/0136-1694-2020-101-5-18 EDN: https://elibrary.ru/XOVGZT

Skvortsov, A. A. (1964). Irrigation of agricultural fields and microclimate. Leningrad: GIMIZ. 277 p.

Terekhov, A. G. (2020). Satellite diagnostics of changes in agricultural water supply of the Xinjiang Uygur Autonomous Region of the PRC based on the surface cooling effect of irrigated farmland based on data from 2002 to 2019. Current Problems of Remote Sensing of the Earth from Space, 17(7), 131-141. https://doi.org/10.21046/2070-7401-2020-17-7-131-141 EDN: https://elibrary.ru/MTQRDA

Terekhov, A. G., Abaev, N. N., & Maglinets, Yu. A. (2021). Satellite monitoring of the state of the Amu Darya oases during the period from 2003 to 2020 based on the analysis of the cooling effect of the territories as a result of their irrigation. Current Problems of Remote Sensing of the Earth from Space, 18(5), 123-132. https://doi.org/10.21046/2070-7401-2021-18-5-123-132 EDN: https://elibrary.ru/VVWEGH

Akinyemi, F. O., Ikanyeng, M., & Muro, J. (2019). Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City and Environment Interactions, 4, 100029. https://doi.org/10.1016/j.cacint.2020.100029 EDN: https://elibrary.ru/QDKYQU

Albaladejo-García, J. A., Alcon, F., & Martínez-Paz, J. M. (2020). The Irrigation Cooling Effect as a Climate Regulation Service of Agroecosystems. Water, 12, 1553. https://doi.org/10.3390/w12061553 EDN: https://elibrary.ru/DZTZTW

Allen, M. A., Roberts, D. A., & McFadden, J. P. (2021). Reduced urban green cover and daytime cooling capacity during the 2012-2016 California drought. Urban Climate, 36, 100768. https://doi.org/10.1016/j.uclim.2020.100768 EDN: https://elibrary.ru/RRXUZZ

Asrar, G., Fuchs, M., Kanemasu, E. T., & Hatfield, J. L. (1984). Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agron. J., 76, 300-306. https://doi.org/10.2134/agronj1984.00021962007600020029x

Batchelor, C., Hoogeveen, J., Faurès, J. M., & Peiser, L. (2016). Water accounting and auditing - A sourcebook. FAO WATER REPORTS 43. Rome: FAO, 232 p.

Chen, P. Y., Fedosejevs, G., Tiscareño-LóPez, M., & Arnold, J. G. (2006). Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environ Monit Assess, 119, 69-82. https://doi.org/10.1007/s10661-005-9006-7 EDN: https://elibrary.ru/ITUORM

Coleman, R. W., Stavros, N., Hulley, G., & Parazoo, N. (2020). Comparison of thermal infrared-derived maps of irrigated and non-irrigated vegetation in urban and non-urban areas of southern California. Remote Sensing, 12(24), 4102. https://doi.org/10.3390/rs12244102 EDN: https://elibrary.ru/VGPQQE

Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett., 4, 035006. https://doi.org/10.1088/1748-9326/4/3/035006 EDN: https://elibrary.ru/OMQJVH

Dong, J., Pang, Z., Lin, S., Zhang, X., Xie, Z., Ren, P., Zhang, X., & Yuan, W. (2024). Cotton lands induced cooling effect on land surface temperature in Xinjiang, China. Agricultural and Forest Meteorology, 351, 110004. https://doi.org/10.1016/j.agrformet.2024.110004 EDN: https://elibrary.ru/BAUECQ

Fischer, G., van Velthuizen, H. T., Shah, M. M., & Nachtergaele, F. O. (2002). Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report. IIASA, Laxenburg, Austria: RR-02-02, 155 p.

Gao, K., Santamouris, M., & Feng, J. (2020). On the cooling potential of irrigation to mitigate urban heat island. Sci. Total Environ., 740, 139754. https://doi.org/10.1016/j.scitotenv.2020.139754 EDN: https://elibrary.ru/IYNCII

Hou, M., Tian, F., Zhang, T., & Huang, M. (2019). Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag., 222, 182-192. https://doi.org/10.1016/j.agwat.2019.06.005

Hou, M., Zhao, L., & Lin, A. (2023). Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method. Remote Sens., 15, 4571. https://doi.org/10.3390/rs15184571 EDN: https://elibrary.ru/NYVFOZ

Kucera, D., & Jenerette, G. D. (2023). Urban greenness and its cooling effects are influenced by changes in drought, physiography, and socio-demographics in Los Angeles, CA. Urban Climate, 52, 101743. https://doi.org/10.1016/j.uclim.2023.101743 EDN: https://elibrary.ru/PKGLZP

Kueppers, L. M., Snyder, M. A., & Sloan, L. C. (2007). Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703. https://doi.org/10.1029/2006GL028679

Lawston, P. M., Santanello, J. A., Jr., Hanson, B., & Arsensault, K. (2020). Impacts of irrigation on summertime temperatures in the pacific northwest. Earth Interactions, 24(1), 1. https://doi.org/10.1175/ei-d-19-0015.1 EDN: https://elibrary.ru/BQTKUO

Li, D., Chen, Y., Hu, T., Cui, Y., Luo, Y., Luo, H., & Meng, Q. (2020). Climate changes in the Lhasa River basin, Tibetan Plateau: Irrigation induced cooling along with a warming trend. Theor. Appl. Climatol., 140, 1043-1054. https://doi.org/10.1007/s00704-020-03146-y EDN: https://elibrary.ru/MLEQAS

Li, M. (2024). Research on the effects of extreme heat exposure on human health. Theoretical and Natural Science, 29, 194-199. https://doi.org/10.54254/2753-8818/29/20240777 EDN: https://elibrary.ru/BQKVKA

Li, Y., Guan, K., Peng, B., Franz, T. E., Wardlow, B., & Pan, M. (2020). Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology, 26(5), 3065-3078. https://doi.org/10.1111/gcb.15002 EDN: https://elibrary.ru/UQBZXM

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, S., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B.-H., Yan, G., & Zhou, C. (2022). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics., 61, e2022RG000777. https://doi.org/10.1029/2022RG000777 EDN: https://elibrary.ru/YASDOG

Lin, Y., Li, X., Zhang, T., Chao, N., Yu, J., Cai, J., & Sneeuw, N. (2020). Water Volume Variations Estimation and Analysis Using Multisource Satellite Data: A Case Study of Lake Victoria. Remote Sensing, 12(18), 3052. https://doi.org/10.3390/rs12183052 EDN: https://elibrary.ru/OYXBLN

Liu, J., Jin, J., & Niu, G.-Y. (2021). Effects of Irrigation on Seasonal and Annual Temperature and Precipitation over China Simulated by the WRF Model. Journal of Geophysical Research: Atmospheres, 126(10), e2020JD034222. https://doi.org/10.1029/2020jd034222 EDN: https://elibrary.ru/CKHLTN

Liu, N., Zhao, X., Zhang, X., Zhao, J., Wang, H., & Wu, D. (2023). Remotely sensed evidence of the divergent climate impacts of wind farms on croplands and grasslands. Science of the Total Environment, 905, 167203. https://doi.org/10.1016/j.scitotenv.2023.167203 EDN: https://elibrary.ru/WMEXBO

Lobell, D. B., Bonfils, C. J., Kueppers, L. M., & Snyder, M. A. (2008). Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett., 35, L09705. https://doi.org/10.1029/2008GL034145 EDN: https://elibrary.ru/MEZNKF

Mu, T., Liu, G., Yang, X., & Yu, Y. (2023). Soil-Moisture Estimation Based on Multiple-Source Remote-Sensing Images. Remote Sensing, 15(1), 139. https://doi.org/10.3390/rs15010139 EDN: https://elibrary.ru/TSTQEM

Pan, T., Zhang, C., Kuang, W., Luo, G., Du, G., & Yin, Z. (2020). Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Science of the Total Environment, 722, 137917. https://doi.org/10.1016/j.scitotenv.2020.137917 EDN: https://elibrary.ru/VPQTHT

Shah, H. L., Zhou, T., Huang, M., & Mishra (2019). Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Basins. Journal of Geophysical Research: Atmospheres, 124(3), 1449-1462. https://doi.org/10.1029/2018JD029132

Shiklomanov, I. A. (2000). Appraisal and Assessment of World Water Resources. Water Int., 25, 11-32. https://doi.org/10.1080/02508060008686794 EDN: https://elibrary.ru/LGHWKX

Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation-A global inventory. Hydrol. Earth Syst. Sci., 14, 1863-1880. https://doi.org/10.5194/hess-14-1863-2010 EDN: https://elibrary.ru/OLGCBP

Siebert, S., Döll, P., Hoogeveen, J., Faures, J. M., Frenken, K., & Feick, S. (2005). Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535-547. https://doi.org/10.5194/hess-9-535-2005 EDN: https://elibrary.ru/LZZIDH

Tan, C.-H., Chu, T.-W., & Jao, C.-C. (2011). Cooling effect range assessment of paddy fields in urban neighborhood by Landsat thermal imagery. In 32nd Asian Conference on Remote Sensing 2011, ACRS 2011 (Vol. 3, pp. 1857-1862).

Terekhov, A., & Abayev, N. (2020). Irrigation cooling effect: Opportunities in task of estimation of international irrigation water usage in transboundary River Syrdarya basin, Central Asia. E3S Web of Conferences, 223, 02009. https://doi.org/10.1051/e3sconf/202022302009 EDN: https://elibrary.ru/EFLHOB

van Keulen, H., & Wolf, J. (1986). Modelling of agricultural production: weather, soils and crops. Wageningen: Pudoc, pp. 235-247.

Wang, Z., Vivoni, E. R., Bohn, T. J., & Wang, Z.-H. (2021). A Multiyear Assessment of Irrigation Cooling Capacity in Agricultural and Urban Settings of Central Arizona. Journal of the American Water Resources Association, 57(5), 771-788. https://doi.org/10.1111/1752-1688.12920

Yang, Q., Huang, X., & Tang, Q. (2020). Irrigation cooling effect on land surface temperature across China based on satellite observations. Science of the Total Environment, 705, 135984. https://doi.org/10.1016/j.scitotenv.2019.135984 EDN: https://elibrary.ru/DDZSII

Yang, Q., Huang, X., & Tang, Q. (2020). Global assessment of the impact of irrigation on land surface temperature. Science Bulletin, 65(17), 1440-1443. https://doi.org/10.1016/j.scib.2020.04.005 EDN: https://elibrary.ru/MRLEHK

Zhang, C., Dong, J., Leng, G., Doughty, R., Zhang, K., Han, S., Zhang, G., Zhang, X., & Ge, Q. (2023). Attenuated cooling effects with increasing water-saving irrigation: Satellite evidence from Xinjiang, China. Agricultural and Forest Meteorology, 333, 109397. https://doi.org/10.1016/j.agrformet.2023.109397 EDN: https://elibrary.ru/SZUKJF

Zhang, C., Ge, Q., Dong, J., Zhang, X., Li, Y., & Han, S. (2023). Characterizing spatial, diurnal, and seasonal patterns of agricultural irrigation expansion-induced cooling in Northwest China from 2000 to 2020. Agricultural and Forest Meteorology, 330, 109304. https://doi.org/10.1016/j.agrformet.2022.109304 EDN: https://elibrary.ru/DUVCKR

Zhang, F., Peng, K., & Zhang, F. (2022). Spatial distribution characteristics of land surface temperature and its “source-sink” effect in Yanqi Basin, Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 38(16), 153-161.

Zhang, Z., Lin, A., Zhao, L., & Zhao, B. (2022). Attribution of local land surface temperature variations response to irrigation over the North China Plain. Science of the Total Environment, 826, 154104. https://doi.org/10.1016/j.scitotenv.2022.154104 EDN: https://elibrary.ru/VVPALD

Zhu, P., & Burney, J. (2022). Untangling irrigation effects on maize water and heat stress alleviation using satellite data. Hydrology and Earth System Sciences, 26(3), 827-840. https://doi.org/10.5194/hess-26-827-2022 EDN: https://elibrary.ru/ZVSAOD

Zhu, X., Liang, S., & Pan, Y. (2012). Observational evidence of the cooling effect of agricultural irrigation in Jilin, China. Climatic Change, 114(3-4), 799-811. https://doi.org/10.1007/s10584-012-0435-3 EDN: https://elibrary.ru/HZMVUW


Опубликован
2025-08-30
Как цитировать
Savin, I., Terekhov, A., & Mukhamediev, R. (2025). Использование индекса ICE для спутникового мониторинга ирригационных массивов и состояния земель. Siberian Journal of Life Sciences and Agriculture, 17(2). https://doi.org/10.12731/2658-6649-2025-17-2-1128
Раздел
Экология, почвоведение и природопользование