Причины появления, механизмы, скорость развития, пути распространения и последствия устойчивости к антибиотикам

  • Pavel A. Vedeneev Уральский федеральный университет имени первого президента России Б. Н. Ельцина
  • Aleksey V. Buhler Уральский федеральный университет имени первого президента России Б. Н. Ельцина; Уральский государственный экономический университет
  • Irina A. Lebedeva Уральский федеральный аграрный научно-исследовательский центр УрО РАН
  • Elena G. Kovaleva Уральский федеральный университет имени первого президента России Б. Н. Ельцина
Ключевые слова: антибиотикорезистентность, устойчивость к антибиотикам, механизмы устойчивости, скорость развития, пути распространения, последствия устойчивости

Аннотация

Проблема антибиотикорезистентности сейчас как никогда актуальна. Кризис, связанный с распространением устойчивости к антибиотикам, приближается с каждым днем. Новых антибактериальных препаратов и методов, позволяющих эффективно бороться с устойчивыми микроорганизмами, не появляется, следовательно, появляется серьёзнейший вызов для всего человечества, так как от эффективности антибиотиков напрямую зависят такие важные для жизни человека сферы как медицина и сельское хозяйство.

Цель исследования. Данная статья позволяет сформировать системный взгляд на явление антибиотикорезистентности.

Материал и методы. Для анализа литературы были использованы материалы из ресурсов PubMed и PubMed Central Национальной медицинской библиотеки США, Google Scholar, Elsevier Clinical Key и Elsevier Science Direct. Выборку составили научные статьи, посвященные антибиотикорезистентности.

Результат. В статье раскрываются причины появления, механизмы, скорость развития, способы и пути распространения антибиотикорезистентности, а также последствия приобретения устойчивости для микроорганизмов и способы сдерживания антибиотикорезистентности.

Благодарности. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках Программы развития Уральского федерального университета имени первого Президента России Б. Н. Ельцина в соответствии с программой стратегического академического лидерства "Приоритет-2030".

EDN: YWNYKM

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Pavel A. Vedeneev, Уральский федеральный университет имени первого президента России Б. Н. Ельцина

аспирант

Aleksey V. Buhler, Уральский федеральный университет имени первого президента России Б. Н. Ельцина; Уральский государственный экономический университет

кандидат химических наук, доцент

Irina A. Lebedeva, Уральский федеральный аграрный научно-исследовательский центр УрО РАН

доктор биологических наук, ведущий научный сотрудник, лаборатория ветеринарных технологий и биоинжиниринга

Elena G. Kovaleva, Уральский федеральный университет имени первого президента России Б. Н. Ельцина

доктор химический наук, доцент

Литература

Всемирная организация здравоохранения. (2014). Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам (World Health Organization. (2014). WHO global strategy for containment of antimicrobial resistance). Получено из https://iris.who.int/handle/10665/91617?locale-attribute=ru&

Всемирная организация здравоохранения. (2015). Глобальный план действий по борьбе с устойчивостью к противомикробным препаратам (World Health Organization. (2015). Global action plan on antimicrobial resistance). Получено из https://www.who.int/ru/publications/i/item/9789241509763

Национальная ассоциация специалистов по контролю инфекций (НАСКИ). Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи (National Association of Infection Control Specialists (NASCI). SCAT Program (Antimicrobial Therapy Control Strategy) in hospital care). Получено из https://nasci.ru/?id=4236

Правительство Российской Федерации. (2017). Распоряжение № 2045-р от 3 октября 2017 г. Об утверждении Стратегии предупреждения распространения антимикробной резистентности (Government of the Russian Federation. (2017). Order No. 2045-r dated October 3, 2017. On approval of the Strategy for preventing the spread of antimicrobial resistance).

Химическая энциклопедия (Том 4). (1995). Под ред. Н. С. Зефирова. Москва: Большая Российская энциклопедия. 639 с. (Chemical Encyclopedia (Vol. 4). (1995). Ed. by N. S. Zefirov. Moscow: Great Russian Encyclopedia. 639 p.)

Ahlstrom, C. A., van Toor, M. L., Woksepp, H., Chandler, J. C., Reed, J. A., Reeves, A. B., Waldenström, J., Franklin, A. B., Douglas, D. C., Bonnedahl, J., & Ramey, A. M. (2021). Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. The Science of the Total Environment, 764. https://doi.org/10.1016/j.scitotenv.2020.144551 EDN: https://elibrary.ru/rsowgv

Ahmad, M., & Khan, A. U. (2019). Global economic impact of antibiotic resistance: A review. Journal of Global Antimicrobial Resistance, 19, 313-316. https://doi.org/10.1016/j.jgar.2019.05.024

Akhtar, M., Hirt, H., & Zurek, L. (2009). Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbial Ecology, 58(3), 509-518. https://doi.org/10.1007/s00248-009-9533-9. EDN: https://elibrary.ru/qynlsu

Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. Biochemistry, 53(10), 1565-1574. https://doi.org/10.1021/bi5000564

Alduina, R., Gambino, D., Presentato, A., Gentile, A., Sucato, A., Savoca, D., Filippello, S., Visconti, G., Caracappa, G., Vicari, D., & Arculeo, M. (2020). Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea? Antibiotics (Basel, Switzerland), 9(3). https://doi.org/10.3390/antibiotics9030116. EDN: https://elibrary.ru/ldlkjc

Anacarso, I., Iseppi, R., Sabia, C., Messi, P., Condò, C., Bondi, M., & de Niederhäusern, S. (2016). Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae). Journal of Medical Entomology, 53(3), 591-597. https://doi.org/10.1093/jme/tjw005

Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology, 6(5), 452-456. https://doi.org/10.1016/j.mib.2003.09.001

Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews. Microbiology, 8(4), 260-271. https://doi.org/10.1038/nrmicro2319

Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews. Microbiology, 12(7), 465-478. https://doi.org/10.1038/nrmicro3270

Andersson, D. I., & Hughes, D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 35(5), 901-911. https://doi.org/10.1111/j.1574-6976.2011.00289.x

Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489-493. https://doi.org/10.1016/s1369-5274(99)00005-3

Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (дата обращения: 17.03.24).

Antimicrobial resistance. World Health Organization. URL: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (дата обращения: 17.03.24).

Baquero, F., Alvarez-Ortega, C., & Martinez, J. L. (2009). Ecology and evolution of antibiotic resistance. Environmental microbiology reports, 1(6), 469-476. https://doi.org/10.1111/j.1758-2229.2009.00053.x

Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature reviews. Microbiology, 13(5), 310-317. https://doi.org/10.1038/nrmicro3439

Björkman, J., & Andersson, D. I. (2000). The cost of antibiotic resistance from a bacterial perspective. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 3(4), 237-245. https://doi.org/10.1054/drup.2000.0147

Björkman, J., Hughes, D., & Andersson, D. I. (1998). Virulence of antibiotic-resistant Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3949-3953. https://doi.org/10.1073/pnas.95.7.3949

Björkman, J., Samuelsson, P., Andersson, D. I., & Hughes, D. (1999). Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Molecular microbiology, 31(1), 53-58. https://doi.org/10.1046/j.1365-2958.1999.01142.x

Boss, L., Labudda, Ł., Węgrzyn, G., Hayes, F., & Kędzierska, B. (2013). The axe-txe complex of Enterococcus faecium presents a multilayered mode of toxin-antitoxin gene expression regulation. PloS one, 8(9). https://doi.org/10.1371/journal.pone.0073569

Bush, K. (2013). Proliferation and significance of clinically relevant β-lactamases. Annals of the New York Academy of Sciences, 1277, 84-90. https://doi.org/10.1111/nyas.12023

Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet. Infectious diseases, 16(7). https://doi.org/10.1016/S1473-3099(16)00100-6

Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104(6), 901-912. https://doi.org/10.1016/s0092-8674(01)00286-0. EDN: https://elibrary.ru/lzjgvr

Chen, X. H., Koumoutsi, A., Scholz, R., & Borriss, R. (2009). More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology, 16(1-2), 14-24. https://doi.org/10.1159/000142891

Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial Agents and Chemotherapy, 47(12), 3675-3681. https://doi.org/10.1128/AAC.47.12.3675-3681.2003. EDN: https://elibrary.ru/lvmgoz

Dantas, G., Sommer, M. O., Oluwasegun, R. D., & Church, G. M. (2008). Bacteria subsisting on antibiotics. Science, 320(5872), 100-103. https://doi.org/10.1126/science.1155157

Davis, G. S., & Price, L. B. (2016). Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Current Environmental Health Reports, 3(2), 128-135. https://doi.org/10.1007/s40572-016-0089-9. EDN: https://elibrary.ru/lhyozr

D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311(5759), 374-377. https://doi.org/10.1126/science.1120800

Deris, J. B., Kim, M., Zhang, Z., Okano, H., Hermsen, R., Groisman, A., & Hwa, T. (2013). The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science, 342(6162). https://doi.org/10.1126/science.1237435

Di Luca, M. C., Sørum, V., Starikova, I., Kloos, J., Hülter, N., Naseer, U., Johnsen, P. J. (2017). Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. Journal of Antimicrobial Chemotherapy, 72(1), 85-89. https://doi.org/10.1093/jac/dkw350

Dimopoulou, A., Theologidis, I., Liebmann, B., Kalantidis, K., Vassilakos, N., & Skandalis, N. (2019). Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Scientific reports, 9(1), 19120. https://doi.org/10.1038/s41598-019-55645-2. EDN: https://elibrary.ru/kleyug

Domínguez-Santos, R., Pérez-Cobas, A. E., Cuti, P., Pérez-Brocal, V., García-Ferris, C., Moya, A., Latorre, A., & Gil, R. (2021). Interkingdom Gut Microbiome and Resistome of the Cockroach Blattella germanica. mSystems, 6(3). https://doi.org/10.1128/mSystems.01213-20. EDN: https://elibrary.ru/hgwtvu

Dönhöfer, A., Franckenberg, S., Wickles, S., Berninghausen, O., Beckmann, R., & Wilson, D. N. (2012). Structural basis for TetM-mediated tetracycline resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16900-16905. https://doi.org/10.1073/pnas.1208037109

D’Souza, A. W., Potter, R. F., Wallace, M., Shupe, A., Patel, S., Sun, X., Gul, D., Kwon, J. H., Andleeb, S., Burnham, C. D., & Dantas, G. (2019). Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nature communications, 10(1). https://doi.org/10.1038/s41467-019-12563-1. EDN: https://elibrary.ru/wiuwrb

Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., & Luisi, B. F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509(7501), 512-515. https://doi.org/10.1038/nature13205

Durão, P., Trindade, S., Sousa, A., & Gordo, I. (2015). Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance. Molecular biology and evolution, 32(10), 2675-2680. https://doi.org/10.1093/molbev/msv143

Enne, V. I., Bennett, P. M., Livermore, D. M., & Hall, L. M. (2004). Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. The Journal of antimicrobial chemotherapy, 53(6), 958-963. https://doi.org/10.1093/jac/dkh217. EDN: https://elibrary.ru/iqoguz

Evans, D. R., Griffith, M. P., Sundermann, A. J., Shutt, K. A., Saul, M. I., Mustapha, M. M., Marsh, J. W., Cooper, V. S., Harrison, L. H., & Van Tyne, D. (2020). Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife, 9. https://doi.org/10.7554/eLife.53886. EDN: https://elibrary.ru/sjulsh

Fajardo, A., Linares, J. F., & Martínez, J. L. (2009). Towards an ecological approach to antibiotics and antibiotic resistance genes. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 15, 14-16. https://doi.org/10.1111/j.1469-0691.2008.02688.x

Faleye, A. C., Adegoke, A. A., Ramluckan, K., Fick, J., Bux, F., & Stenström, T. A. (2019). Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. The Science of the total environment, 678, 10-20. https://doi.org/10.1016/j.scitotenv.2019.04.410

Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications. European journal of pharmacology, 866. https://doi.org/10.1016/j.ejphar.2019.172813. EDN: https://elibrary.ru/hfhpaq

Floss, H. G., & Yu, T. W. (2005). Rifamycin-mode of action, resistance, and biosynthesis. Chemical reviews, 105(2), 621-632. https://doi.org/10.1021/cr030112j. EDN: https://elibrary.ru/lzjigz

Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O., & Dantas, G. (2012). The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science (New York, N.Y.), 337(6098), 1107-1111. https://doi.org/10.1126/science.1220761

Franklin, A. M., Williams, C. F., & Watson, J. E. (2018). Assessment of Soil to Mitigate Antibiotics in the Environment Due to Release of Wastewater Treatment Plant Effluent. Journal of environmental quality, 47(6), 1347-1355. https://doi.org/10.2134/jeq2018.02.0076

Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., & Ohta, M. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and environmental microbiology, 69(9), 5336-5342. https://doi.org/10.1128/AEM.69.9.5336-5342.2003. EDN: https://elibrary.ru/xoolzh

Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of clinical investigation, 124(7), 2836-2840. https://doi.org/10.1172/JCI68834

Hall, A. R., Iles, J. C., & MacLean, R. C. (2011). The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 187(3), 817-822. https://doi.org/10.1534/genetics.110.124628. EDN: https://elibrary.ru/okrbed

Hansen, T. A., Joshi, T., Larsen, A. R., Andersen, P. S., Harms, K., Mollerup, S., Willerslev, E., Fuursted, K., Nielsen, L. P., & Hansen, A. J. (2016). Vancomycin gene selection in the microbiome of urban Rattus norvegicus from hospital environment. Evolution, medicine, and public health, 2016(1), 219-226. https://doi.org/10.1093/emph/eow021

Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied and environmental microbiology, 81(21), 7593-7599. https://doi.org/10.1128/AEM.00736-15

Hayes, F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science (New York, N.Y.), 301(5639), 1496-1499. https://doi.org/10.1126/science.1088157. EDN: https://elibrary.ru/mbiiyb

Hayes, F., & Van Melderen, L. (2011). Toxins-antitoxins: diversity, evolution and function. Critical reviews in biochemistry and molecular biology, 46(5), 386-408. https://doi.org/10.3109/10409238.2011.600437. EDN: https://elibrary.ru/phtfml

He, Y., Jin, L., Sun, F., Hu, Q., & Chen, L. (2016). Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China. Environmental science and pollution research international, 23(15), 15033-15040. https://doi.org/10.1007/s11356-016-6614-4. EDN: https://elibrary.ru/nxrurq

Hellweger, F. L. (2013). Escherichia coli adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing. FEMS microbiology ecology, 83(3), 622-631. https://doi.org/10.1111/1574-6941.12019

Hobbs, E. C., Yin, X., Paul, B. J., Astarita, J. L., & Storz, G. (2012). Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16696-16701. https://doi.org/10.1073/pnas.1210093109

Hooper, D. C. (2002). Fluoroquinolone resistance among Gram-positive cocci. The Lancet. Infectious diseases, 2(9), 530-538. https://doi.org/10.1016/s1473-3099(02)00369-9

Howden, B. P., Davies, J. K., Johnson, P. D., Stinear, T. P., & Grayson, M. L. (2010). Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical microbiology reviews, 23(1), 99-139. https://doi.org/10.1128/CMR.00042-09. EDN: https://elibrary.ru/lsbgte

Howden, B. P., McEvoy, C. R., Allen, D. L., Chua, K., Gao, W., Harrison, P. F., Bell, J., Coombs, G., Bennett-Wood, V., Porter, J. L., Robins-Browne, R., Davies, J. K., Seemann, T., & Stinear, T. P. (2011). Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS pathogens, 7(11), e1002359. https://doi.org/10.1371/journal.ppat.1002359

Howden, B. P., Stinear, T. P., Allen, D. L., Johnson, P. D., Ward, P. B., & Davies, J. K. (2008). Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrobial agents and chemotherapy, 52(10), 3755-3762. https://doi.org/10.1128/AAC.01613-07. EDN: https://elibrary.ru/mmfyfv

Hu, H., Johani, K., Gosbell, I. B., Jacombs, A. S., Almatroudi, A., Whiteley, G. S., Deva, A. K., Jensen, S., & Vickery, K. (2015). Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. The Journal of hospital infection, 91(1), 35-44. https://doi.org/10.1016/j.jhin.2015.05.016

Hurdle, J. G., O’Neill, A. J., Mody, L., Chopra, I., & Bradley, S. F. (2005). In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. The Journal of antimicrobial chemotherapy, 56(6), 1166-1168. https://doi.org/10.1093/jac/dki387. EDN: https://elibrary.ru/iqqvkn

Imamovic, L., & Sommer, M. O. (2013). Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Science translational medicine, 5(204), 204ra132. https://doi.org/10.1126/scitranslmed.3006609

Investigation Summary: Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E. coli O157:H7. US Food and Drug Administration. URL: https://www.fda.gov/food/outbreaks-foodborne-illness/investigation-summary-factors-potentially-contributing-contamination-romaine-lettuce-implicated-fall (дата обращения: 17.03.24).

Jacobsen, L., Wilcks, A., Hammer, K., Huys, G., Gevers, D., & Andersen, S. R. (2007). Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiology Ecology, 59(1), 158-166. https://doi.org/10.1111/j.1574-6941.2006.00212.x

Jana, S., & Deb, J. K. (2006). Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology, 70(2), 140-150. https://doi.org/10.1007/s00253-005-0279-0. EDN: https://elibrary.ru/ppjmly

Jara, D., Bello-Toledo, H., Domínguez, M., Cigarroa, C., Fernández, P., Vergara, L., Quezada-Aguiluz, M., Opazo-Capurro, A., Lima, C. A., & González-Rocha, G. (2020). Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60035-0. EDN: https://elibrary.ru/urdkvm

John, J. F., Jr, & Rice, L. B. (2000). The microbial genetics of antibiotic cycling. Infection Control and Hospital Epidemiology. https://doi.org/10.1086/503170

Johnson, J. R., Kuskowski, M. A., Smith, K., O’Bryan, T. T., & Tatini, S. (2005). Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. The Journal of Infectious Diseases, 191(7), 1040-1049. https://doi.org/10.1086/428451

Kaur, S. (2000). Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World Journal of Microbiology and Biotechnology, 16, 781-793. https://doi.org/10.1023/A. EDN: https://elibrary.ru/ltdqnh

Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202-1211. https://doi.org/10.1021/es011055j

Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H., & Hiramatsu, K. (2003). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Molecular microbiology, 49(3), 807-821. https://doi.org/10.1046/j.1365-2958.2003.03599.x. EDN: https://elibrary.ru/etphvv

Leclercq, R. (2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 34(4), 482-492. https://doi.org/10.1086/324626

Levin, B. R., Lipsitch, M., Perrot, V., Schrag, S., Antia, R., Simonsen, L., Walker, N. M., & Stewart, F. M. (1997). The population genetics of antibiotic resistance. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 24. https://doi.org/10.1093/clinids/24.supplement_1.s9

Levin, B. R., Perrot, V., & Walker, N. (2000). Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics, 154(3), 985-997. https://doi.org/10.1093/genetics/154.3.985

Li, W., Atkinson, G. C., Thakor, N. S., Allas, U., Lu, C. C., Chan, K. Y., Tenson, T., Schulten, K., Wilson, K. S., Hauryliuk, V., & Frank, J. (2013). Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nature communications, 4. https://doi.org/10.1038/ncomms2470. EDN: https://elibrary.ru/rqjnef

Luangtongkum, T., Shen, Z., Seng, V. W., Sahin, O., Jeon, B., Liu, P., & Zhang, Q. (2012). Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. Antimicrobial agents and chemotherapy, 56(3), 1300-1308. https://doi.org/10.1128/AAC.05516-11

Maeusli, M., Lee, B., Miller, S., Reyna, Z., Lu, P., Yan, J., Ulhaq, A., Skandalis, N., Spellberg, B., & Luna, B. (2020). Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter baylyi to Escherichia coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. mSphere, 5(3). https://doi.org/10.1128/mSphere.00329-20. EDN: https://elibrary.ru/hbtnzq

Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules (Basel, Switzerland), 23(4). https://doi.org/10.3390/molecules23040795

Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24(4), 718-733. https://doi.org/10.1128/CMR.00002-11

Martínez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68-77. https://doi.org/10.3109/03009734.2014.901444

Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44(7), 1771-1777. https://doi.org/10.1128/AAC.44.7.1771-1777.2000

Martínez, J. L., Coque, T. M., & Baquero, F. (2015). Prioritizing risks of antibiotic resistance genes in all metagenomes. Nature Reviews. Microbiology, 13(6). https://doi.org/10.1038/nrmicro3399-c2

Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., Martínez-Solano, L., & Sánchez, M. B. (2009). A global view of antibiotic resistance. FEMS Microbiology Reviews, 33(1), 44-65. https://doi.org/10.1111/j.1574-6976.2008.00142.x

Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet, 351(9105), 797-799. https://doi.org/10.1016/S0140-6736(97)07322-4. EDN: https://elibrary.ru/crwdjl

Mehainaoui, A., Menasria, T., Benouagueni, S., Benhadj, M., Lalaoui, R., & Gacemi-Kirane, D. (2021). Rapid screening and characterization of bacteria associated with hospital cockroaches (Blattella germanica L.) using MALDI-TOF mass spectrometry. Journal of Applied Microbiology, 130(3), 960-970. https://doi.org/10.1111/jam.14803. EDN: https://elibrary.ru/ncpmuf

Melnyk, A. H., Wong, A., & Kassen, R. (2015). The fitness costs of antibiotic resistance mutations. Evolutionary Applications, 8(3), 273-283. https://doi.org/10.1111/eva.12196

Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-Infective Therapy, 12(10), 1221-1236. https://doi.org/10.1586/14787210.2014.956092

Morosini, M. I., García-Castillo, M., Coque, T. M., Valverde, A., Novais, A., Loza, E., Baquero, F., & Cantón, R. (2006). Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrobial Agents and Chemotherapy, 50(8), 2695-2699. https://doi.org/10.1128/AAC.00155-06

Nadimpalli, M., Delarocque-Astagneau, E., Love, D. C., Price, L. B., Huynh, B. T., Collard, J. M., Lay, K. S., Borand, L., Ndir, A., Walsh, T. R., Guillemot, D., & BIRDY Study Group. (2018). Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries. Clinical Infectious Diseases, 66(6), 963-969. https://doi.org/10.1093/cid/cix879

Neyra, R. C., Frisancho, J. A., Rinsky, J. L., Resnick, C., Carroll, K. C., Rule, A. M., Ross, T., You, Y., Price, L. B., & Silbergeld, E. K. (2014). Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA). Environmental Health Perspectives, 122(5), 471-477. https://doi.org/10.1289/ehp.1306741. EDN: https://elibrary.ru/jgtkpt

Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003. EDN: https://elibrary.ru/meopop

Nilsson, A. I., Zorzet, A., Kanth, A., Dahlström, S., Berg, O. G., & Andersson, D. I. (2006). Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proceedings of the National Academy of Sciences, 103(18), 6976-6981. https://doi.org/10.1073/pnas.0602171103

Olivares, J., Álvarez-Ortega, C., & Martinez, J. L. (2014). Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 58(7), 3904-3913. https://doi.org/10.1128/AAC.00121-14

Olivares, J., Alvarez-Ortega, C., Linares, J. F., Rojo, F., Köhler, T., & Martínez, J. L. (2012). Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environmental Microbiology, 14(8), 1968-1981. https://doi.org/10.1111/j.1462-2920.2012.02727.x

Oteo, J., Mencía, A., Bautista, V., Pastor, N., Lara, N., González-González, F., García-Peña, F. J., & Campos, J. (2018). Colonization with Enterobacteriaceae-Producing ESBLs, AmpCs, and OXA-48 in Wild Avian Species, Spain 2015-2016. Microbial Drug Resistance, 24(7), 932-938. https://doi.org/10.1089/mdr.2018.0004

Pärnänen, K. M. M., Narciso-da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., Do, T. T., Elpers, C., Fatta-Kassinos, D., Henriques, I., Jaeger, T., Karkman, A., Martinez, J. L., Michael, S. G., Michael-Kordatou, I., O’Sullivan, K., Rodriguez-Mozaz, S., Schwartz, T., Sheng, H., Sørum, H., Stedtfeld, R. D., & Manaia, C. M. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science advances, 5(3). https://doi.org/10.1126/sciadv.aau9124

Poole, K. (2005). Efflux-mediated antimicrobial resistance. The Journal of antimicrobial chemotherapy, 56(1), 20-51. https://doi.org/10.1093/jac/dki171. EDN: https://elibrary.ru/mgrdnd

PubMed. URL: https://pubmed.ncbi.nlm.nih.gov/ (дата обращения: 01.11.2024)

Quinn, J. P., Dudek, E. J., DiVincenzo, C. A., Lucks, D. A., & Lerner, S. A. (1986). Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. The Journal of infectious diseases, 154(2), 289-294. https://doi.org/10.1093/infdis/154.2.289

Rabbia, V., Bello-Toledo, H., Jiménez, S., Quezada, M., Domínguez, M., Vergara, L., Gómez-Fuentes, C., Calisto-Ulloa, N., González-Acuña, D., López, J., et al. (2016). Antibiotic Resistance in Escherichia Coli Strains Isolated from Antarctic Bird Feces, Water from inside a Wastewater Treatment Plant, and Seawater Samples Collected in the Antarctic Treaty Area. Polar Sci., 10, 123-131. https://doi.org/10.1016/j.polar.2016.04.002

Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 13(6), 151-171. https://doi.org/10.1016/j.drup.2010.08.003. EDN: https://elibrary.ru/ompgnt

Reynolds, P. E. (1989). Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 8(11), 943-950. https://doi.org/10.1007/BF01967563. EDN: https://elibrary.ru/kpmkem

Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C., & San Millán, Á. (2021). Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nature reviews. Microbiology, 19(6), 347-359. https://doi.org/10.1038/s41579-020-00497-1. EDN: https://elibrary.ru/ornmhm

Rodríguez-Martínez, J. M., Cano, M. E., Velasco, C., Martínez-Martínez, L., & Pascual, A. (2011). Plasmid-mediated quinolone resistance: an update. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy, 17(2), 149-182. https://doi.org/10.1007/s10156-010-0120-2

Rosvoll, T. C., Pedersen, T., Sletvold, H., Johnsen, P. J., Sollid, J. E., Simonsen, G. S., Jensen, L. B., Nielsen, K. M., & Sundsfjord, A. (2010). PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS immunology and medical microbiology, 58(2), 254-268. https://doi.org/10.1111/j.1574-695X.2009.00633.x

Ryu, S. H., Park, S. G., Choi, S. M., Hwang, Y. O., Ham, H. J., Kim, S. U., Lee, Y. K., Kim, M. S., Park, G. Y., Kim, K. S., & Chae, Y. Z. (2012). Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. International journal of food microbiology, 152(1-2), 14-18. https://doi.org/10.1016/j.ijfoodmicro.2011.10.003

San Millan, A., Toll-Riera, M., Qi, Q., & MacLean, R. C. (2015). Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature communications, 6. https://doi.org/10.1038/ncomms7845

Sandegren, L., & Andersson, D. I. (2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature reviews. Microbiology, 7(8), 578-588. https://doi.org/10.1038/nrmicro2174. EDN: https://elibrary.ru/xwrner

Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International journal of antimicrobial agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010

Sjölund, M., Bonnedahl, J., Hernandez, J., Bengtsson, S., Cederbrant, G., Pinhassi, J., Kahlmeter, G., Olsen, B. (2008). Dissemination of multidrug-resistant bacteria into the Arctic. Emerging infectious diseases, 14(1), 70-72. https://doi.org/10.3201/eid1401.070704. EDN: https://elibrary.ru/mssgjr

Skurnik, D., Roux, D., Cattoir, V., Danilchanka, O., Lu, X., Yoder-Himes, D. R., Han, K., Guillard, T., Jiang, D., Gaultier, C., Guerin, F., Aschard, H., Leclercq, R., Mekalanos, J. J., Lory, S., & Pier, G. B. (2013). Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20747-20752. https://doi.org/10.1073/pnas.1221552110

Smani, Y., López-Rojas, R., Domínguez-Herrera, J., Docobo-Pérez, F., Martí, S., Vila, J., & Pachón, J. (2012). In vitro and in vivo reduced fitness and virulence in ciprofloxacin-resistant Acinetobacter baumannii. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(1). https://doi.org/10.1111/j.1469-0691.2011.03695.x

State of the Art on the Contribution of Water to Antimicrobial Resistance. Joint Research Centre. Retrieved March 17, 2024, from https://publications.jrc.ec.europa.eu/repository/handle/JRC114775

Stępień-Pyśniak, D., Hauschild, T., Dec, M., Marek, A., & Urban-Chmiel, R. (2019). Clonal Structure and Antibiotic Resistance of Enterococcus spp. from Wild Birds in Poland. Microbial drug resistance (Larchmont, N.Y.), 25(8), 1227-1237. https://doi.org/10.1089/mdr.2018.0461

Sun, Z., Jiao, X., Peng, Q., Jiang, F., Huang, Y., Zhang, J., & Yao, F. (2013). Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 31(2-3), 347-354. https://doi.org/10.1159/000343372

Sundqvist, M., Geli, P., Andersson, D. I., Sjölund-Karlsson, M., Runehagen, A., Cars, H., Abelson-Storby, K., Cars, O., & Kahlmeter, G. (2010). Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. The Journal of antimicrobial chemotherapy, 65(2), 350-360. https://doi.org/10.1093/jac/dkp387

Tacão, M., Moura, A., Correia, A., & Henriques, I. (2014). Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water research, 48, 100-107. https://doi.org/10.1016/j.watres.2013.09.021

The State of World Fisheries and Aquaculture 2018 (SOFIA). Food and Agriculture Organization of the United Nations. Retrieved March 17, 2024, from https://www.fao.org/documents/card/en/c/I9540EN

Toprak, E., Veres, A., Michel, J. B., Chait, R., Hartl, D. L., & Kishony, R. (2011). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature genetics, 44(1), 101-105. https://doi.org/10.1038/ng.1034. EDN: https://elibrary.ru/xzivbm

Trindade, S., Sousa, A., Xavier, K. B., Dionisio, F., Ferreira, M. G., & Gordo, I. (2009). Positive epistasis drives the acquisition of multidrug resistance. PLoS genetics, 5(7). https://doi.org/10.1371/journal.pgen.1000578. EDN: https://elibrary.ru/xydixq

Trotta, A., Cirilli, M., Marinaro, M., Bosak, S., Diakoudi, G., Ciccarelli, S., Paci, S., Buonavoglia, D., & Corrente, M. (2021). Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Marine pollution bulletin, 164. https://doi.org/10.1016/j.marpolbul.2021.112015. EDN: https://elibrary.ru/yglnwj

Vaidya, V. K. (2011). Horizontal Transfer of Antimicrobial Resistance by Extended-Spectrum β Lactamase-Producing Enterobacteriaceae. Journal of laboratory physicians, 3(1), 37-42. https://doi.org/10.4103/0974-2727.78563

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: a peer-reviewed journal for formulary management, 40(4), 277-283. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521

Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M. A., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J., Dewulf, J., & Herman, L. (2013). Antimicrobial resistance in the food chain: a review. International journal of environmental research and public health, 10(7), 2643-2669. https://doi.org/10.3390/ijerph10072643. EDN: https://elibrary.ru/rmfvfj

Watanabe, Y., Cui, L., Katayama, Y., Kozue, K., & Hiramatsu, K. (2011). Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. Journal of clinical microbiology, 49(7), 2680-2684. https://doi.org/10.1128/JCM.02144-10

Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Marine drugs, 15(6). https://doi.org/10.3390/md15060158

Weingarten, R. A., Johnson, R. C., Conlan, S., Ramsburg, A. M., Dekker, J. P., Lau, A. F., Khil, P., Odom, R. T., Deming, C., Park, M., Thomas, P. J., NISC Comparative Sequencing Program, Henderson, D. K., Palmore, T. N., Segre, J. A., & Frank, K. M. (2018). Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio, 9(1). https://doi.org/10.1128/mBio.02011-17. EDN: https://elibrary.ru/vfgktv

Weisblum, B. (1995). Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 39(3), 577-585. https://doi.org/10.1128/AAC.39.3.577

Zeballos-Gross, D., Rojas-Sereno, Z., Salgado-Caxito, M., Poeta, P., Torres, C., & Benavides, J. A. (2021). The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Frontiers in microbiology, 12. https://doi.org/10.3389/fmicb.2021.703886. EDN: https://elibrary.ru/fovwcb

Zhang, Y., Zhang, C., Parker, D. B., Snow, D. D., Zhou, Z., & Li, X. (2013). Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. The Science of the total environment, 463-464, 631-638. https://doi.org/10.1016/j.scitotenv.2013.06.016


Опубликован
2025-09-15
Как цитировать
Vedeneev, P., Buhler, A., Lebedeva, I., & Kovaleva, E. (2025). Причины появления, механизмы, скорость развития, пути распространения и последствия устойчивости к антибиотикам. Siberian Journal of Life Sciences and Agriculture, 17(3). https://doi.org/10.12731/2658-6649-2025-17-3-1131
Раздел
Научные обзоры и сообщения