FIRST REPORT OF CO-HARBORING BLEOMYCIN RESISTANCE GENE (bleMBL) AND CARBAPENEMASE RESISTANCE GENE (blaNDM-1) KLEBSIELLA PNEUMONIAE IN IRAQ WITH COMPARISON STUDY AMONG THE SENSITIVITY TEST, THE BD PHOENIX CPO DETECT TEST, AND THE RAPIDEC® CARBA NP TEST
Аннотация
Two hundred and fifty samples were collected from burn and wound patients between January and July 2023 in Plastic Reconstructive and Burn Surgery Hospital at Sulaymaniyah city/Kurdistan region of Iraq, in addition to the Burn Unit and Wound Care Units of the Azadi Teaching Hospital in Kirkuk, Iraq. We performed a comparison study among (Antibiotic sensitivity test, BD Phoenix CPO detect test and RAPIDEC CARBA NP test), this was the first study of its kind to be performed in Iraq. The findings were supported by molecular detection of two of the most common major carbapenemases in the country, NDM-1 and OXA-48, as well as this study detected five of the recently identified minor/rare carbapenemases worldwide for the first time in Middle East (BKC-1, FRI-1, LMB-1 ,OXA-426, and OXA-198). We recorded five isolates containing chromosomal NDM-1 and OXA-48 genes. The findings indicated that the RAPIDEC CARBA NP test serves as a quick, accurate and sensitive means of detecting all five isolates containing the blaNDM-1 and blaOXA-48 genes. The antibiotic sensitivity test was insufficient in detecting the CPOs while phoenix NMIC-413 AST panel was revealed to be more reliable and accurate in identifying carbapenem resistant isolates in clinical settings than antibiotic sensitivity test and the BD Phoenix CPO detect test report was found to have low detection specificity, further confirmatory tests are required. The current study recorded first report of co-harboring bleomycin resistance gene (bleMBL) and carbapenemase resistance gene (blaNDM-1) Klebsiella pneumoniae in Iraq with accession NO. PP411935. The development of new routine tests for identifying isolates resistant to carbapenem in Iraqi hospitals and other developing countries is very essential. Gram-negative isolates from Iraq that were resistant to carbapenem did not harbor the recently found minor carbapenemase.
Скачивания
Литература
Bourafa, Nadjette, Wafaa Chaalal, Sofiane Bakour, Rym Lalaoui, Nafissa Boutefnouchet, Seydina M. Diene, and Jean-Marc Rolain. Molecular characterization of carbapenem-resistant Gram-negative bacilli clinical isolates in Algeria. Infection and drug resistance, 2018, vol. 11, pp. 735-742. https://doi.org/10.2147/IDR.S150005
Armstrong, Tom, Samuel Jacob Fenn, and Kim R. Hardie. JMM Profile: Carbapenems: a broad-spectrum antibiotic. Journal of medical microbiology, 2021, vol. 70, no. 12, 001462. https://doi.org/10.1099/jmm.0.001462
Aruhomukama, Dickson, Christine F. Najjuka, Henry Kajumbula, Moses Okee, Gerald Mboowa, Ivan Sserwadda, Richard Mayanja, Moses L. Joloba, and David P. Kateete. Bla VIM-and bla OXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC infectious diseases, 2019, vol. 19, pp. 1-8. https://doi.org/10.1186/s12879-019-4510-5
Jalalvand, Kosar, Nasrin Shayanfar, Fereshteh Shahcheraghi, Elahe Amini, Mahsa Mohammadpour, and Pegah Babaheidarian. Evaluation of phenotypic and genotypic characteristics of carbapnemases-producing enterobacteriaceae and its prevalence in a referral hospital in Tehran city. Iranian journal of pathology, 2020, vol. 15, no. 2, pp. 86-95. https://doi.org/10.30699/ijp.2020.111181.2188
David, Sophia, Sandra Reuter, Simon R. Harris, Corinna Glasner, Theresa Feltwell, Silvia Argimon, Khalil Abudahab et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nature microbiology, 2019, vol. 4, no. 11, pp. 1919-1929. https://doi.org/10.1038/s41564-019-0492-8
Bonnin, Rémy A., Agnès B. Jousset, Cécile Emeraud, Saoussen Oueslati, Laurent Dortet, and Thierry Naas. Genetic diversity, biochemical properties, and detection methods of minor carbapenemases in Enterobacterales. Frontiers in Medicine, 2021, vol. 7, 616490. https://doi.org/10.3389/fmed.2020.616490
Nicoletti, Adriana Giannini, Marcelo FM Marcondes, Willames MBS Martins, Luiz GP Almeida, Marisa F. Nicolás, Ana TR Vasconcelos, Vitor Oliveira, and Ana Cristina Gales. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrobial agents and chemotherapy, 2015, vol. 59, no. 9, pp. 5159-5164. https://doi.org/10.1128/AAC.00158-15
Partridge, Sally R. Mobilization of bla BKC-1 by IS Kpn23? Antimicrobial Agents and Chemotherapy, 2016, vol. 60, no. 8, pp. 5102-5104. https://doi.org/10.1128/aac.00785-16
Dortet, Laurent, Laurent Poirel, Samia Abbas, Saoussen Oueslati, and Patrice Nordmann. Genetic and biochemical characterization of FRI-1, a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae. Antimicrobial agents and chemotherapy, 2015, vol. 59, no. 12, pp. 7420-7425. https://doi.org/10.1128/AAC.01636-15
Meunier, Danièle, Jacqueline Findlay, Michel Doumith, Daniel Godoy, Claire Perry, Rachel Pike, Firza Gronthoud et al. FRI-2 carbapenemase-producing Enterobacter cloacae complex in the UK. Journal of Antimicrobial Chemotherapy, 2017, vol. 72, no. 9, pp. 2478-2482. https://doi.org/10.1093/jac/dkx173
Schauer, Jennifer, Sören G. Gatermann, Matthias Marschal, and Niels Pfennigwerth. Genetic and biochemical characterization of FRI-3, a novel variant of the Ambler class A carbapenemase FRI-1. Journal of Antimicrobial Chemotherapy, 2019, vol. 74, no. 10, pp. 2891-2894. https://doi.org/10.1093/jac/dkz295
Kubota, Hiroaki, Yoshifumi Uwamino, Mari Matsui, Tsuyoshi Sekizuka, Yasunori Suzuki, Rumi Okuno, Yumi Uchitani et al. FRI-4 carbapenemase-producing Enterobacter cloacae complex isolated in Tokyo, Japan. Journal of Antimicrobial Chemotherapy, 2018, vol. 73, no. 11, pp. 2969-2972. https://doi.org/10.1093/jac/dky291
Boyd, David A., Brigitte Lefebvre, Laura F. Mataseje, Simon Gagnon, Michel Roger, Patrice Savard, Jean Longtin, and Michael R. Mulvey. Enterobacter sp. N18-03635 harbouring bla FRI-6 class A carbapenemase, Canada. Journal of Antimicrobial Chemotherapy, 2020, vol. 75, no. 2, pp. 486-488. https://doi.org/10.1093/jac/dkz438
Lange, Felix, Niels Pfennigwerth, Rainer Hartl, Heidrun Kerschner, Dagmar Achleitner, Sören G. Gatermann, and Martin Kaase. LMB-1, a novel family of class B3 MBLs from an isolate of Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 2018, vol. 73, no. 9, pp. 2331-2335. https://doi.org/10.1093/jac/dky215
Dabos, Laura, Carlos H. Rodriguez, Marcela Nastro, Laurent Dortet, Rémy A. Bonnin, Angela Famiglietti, Bogdan I. Iorga, Carlos Vay, and Thierry Naas. LMB-1 producing Citrobacter freundii from Argentina, a novel player in the field of MBLs. International journal of antimicrobial agents, 2020, vol. 55, no. 2, 105857. https://doi.org/10.1016/j.ijantimicag.2019.11.014
El Garch, Farid, Pierre Bogaerts, Carine Bebrone, Moreno Galleni, and Youri Glupczynski. OXA-198, an acquired carbapenem-hydrolyzing class D β-lactamase from Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 2011, vol. 55, no. 10, pp. 4828-4833. https://doi.org/10.1128/AAC.00522-11
Bonnin, Rémy A., Agnès B. Jousset, Lauraine Gauthier, Cécile Emeraud, Delphine Girlich, Aimie Sauvadet, Garance Cotellon, Thomas Jové, Laurent Dortet, and Thierry Naas. First occurrence of the OXA-198 carbapenemase in Enterobacterales. Antimicrobial Agents and Chemotherapy, 2020, vol. 64, no. 4, e01471-19. https://doi.org/10.1128/AAC.01471-19
Bogaerts, Pierre, Thierry Naas, Veroniek Saegeman, Remy A. Bonnin, Annette Schuermans, Stéphanie Evrard, Warda Bouchahrouf et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 2017, vol. 72, no. 9, pp. 2469-2477. https://doi.org/10.1093/jac/dkx184
Frère, Jean-Marie, Pierre Bogaerts, Te-Din Huang, Patrick Stefanic, Joël Moray, Fabrice Bouillenne, and Alain Brans. Interactions between avibactam and ceftazidime-hydrolyzing class D β-lactamases. Biomolecules, 2020, vol. 10, no. 3, 483. https://doi.org/10.3390/biom10030483
Palacios, Antonela R., María F. Mojica, Estefanía Giannini, Magdalena A. Taracila, Christopher R. Bethel, Pedro M. Alzari, Lisandro H. Otero et al. The reaction mechanism of metallo-β-lactamases is tuned by the conformation of an active-site mobile loop. Antimicrobial agents and chemotherapy, 2019, vol. 63, no. 1, e01754-18. https://doi.org/10.1128/aac.01754-18
Behzadi, Payam, Herney Andrés García-Perdomo, Tomasz M. Karpiński, and Lernik Issakhanian. Metallo-ß-lactamases: a review. Molecular Biology Reports, 2020, vol. 47, no. 8, pp. 6281-6294. https://doi.org/10.1007/s11033-020-05651-9
Park, Yoon Sik, Tae Yeong Kim, Hyunjae Park, Jung Hun Lee, Diem Quynh Nguyen, Myoung-Ki Hong, Sang Hee Lee, and Lin-Woo Kang. Structural Study of Metal Binding and Coordination in Ancient Metallo-β-Lactamase PNGM-1 Variants. International Journal of Molecular Sciences, 2020, vol. 21, no. 14, 4926. https://doi.org/10.3390/ijms21144926
Bahr, Guillermo, Lisandro J. Gonzalez, and Alejandro J. Vila. Metallo-β-lactamases in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chemical Reviews, 2021, vol. 121, no. 13, pp. 7957-8094. https://doi.org/10.1021/acs.chemrev.1c00138
F Mojica, Maria, Robert A Bonomo, and Walter Fast. B1-metallo-β-lactamases: where do we stand? Current drug targets, 2016, vol. 17, no. 9, pp. 1029-1050. https://doi.org/10.2174/1389450116666151001105622
Dortet, Laurent, Delphine Girlich, Anne-Laure Virlouvet, Laurent Poirel, Patrice Nordmann, Bogdan I. Iorga, and Thierry Naas. Characterization of BRPMBL, the bleomycin resistance protein associated with the Carbapenemase NDM. Antimicrobial agents and chemotherapy, 2017, vol. 61, no. 3, e02413-16. https://dx.doi.org/10.1128/AAC.02413-16
Nii-Trebi, Nicholas Israel. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed research international, 2017, vol. 2017. https://doi.org/10.1155/2017/5245021
Chia, Clemente, and Jason McClure. Protective mechanisms of the body. Anaesthesia & Intensive Care Medicine, 2020, vol. 21, no. 3, pp. 154-156. https://doi.org/10.1016/j.mpaic.2019.12.005
Alotaibi, Fawzia. Carbapenem-resistant Enterobacteriaceae: an update narrative review from Saudi Arabia. Journal of infection and public health, 2019, vol. 12, no. 4, pp. 465-471. https://doi.org/10.1016/j.jiph.2019.03.024
Igbalajobi, O. A., A. O. Oluyege, A. C. Oladeji, and J. A. Babalola. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from clinical samples in Ekiti State University teaching hospital, Ado-Ekiti, Ekiti State of Nigeria. British Microbiology Research Journal, 2016, vol. 12, no. 4, pp. 1-6. https://doi.org/10.9734/BMRJ/2016/22515
Hasan, Sarah Ahmed. Pseudomonas aeruginosa and the multifactorial antibiotic resistance. Eurasian Medical Research Periodical, 2022, vol. 11, pp. 85–94. https://geniusjournals.org/index.php/emrp/article/view/2096
Hasan, Sarah Ahmed, and Kasim Sakran Abass. Prevalence of Gram Negative Bacteria Isolated from Patients with Burn Infection and their Antimicrobial Susceptibility Patterns in Kirkuk City, Iraq. Indian Journal of Public Health Research & Development, 2019, vol. 10, no. 8, pp. 2197-2201.
Hasoon, N. A., and S. L. Hamed. Molecular characterization of carbapenemase-producing Gram-negative bacteria isolated from clinical specimens in Baghdad. Iraq. J Pure Appl Microbiol 2019, vol. 13, no. 2, pp. 1031-1040. https://doi.org/10.22207/JPAM.13.2.41
Samhan, Ahmed F., Nermeen M. Abdelhalim, and Ragab K. Elnaggar. Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up. Burns, 2020, vol. 46, no. 6, pp. 1347-1355. https://doi.org/10.1016/j.burns.2020.01.015
Pruitt, Basil A., Steven E. Wolf, and Arthur D. Mason. Epidemiological, demographic, and outcome characteristics of burn injury. Total burn care, 2012, vol. 4, pp. 15-45. https://doi.org/10.1016/B978-1-4377-2786-9.00003-5
Livimbi, O. M., and I. O. Komolafe. Epidemiology and bacterial colonization of burn injuries in Blantyre. Malawi medical journal, 2007, vol. 19, no. 1, pp. 25-27. https://doi.org/10.4314/mmj.v19i1.10929
Fuentes, Eduardo, Manuel Fuentes, Marcelo Alarcón, and Iván Palomo. Immune system dysfunction in the elderly. Anais da Academia Brasileira de Ciências, 2017, vol. 89, pp. 285-299. https://doi.org/10.1590/0001-3765201720160487
Falcone, Marco, and Giusy Tiseo. Skin and soft tissue infections in the elderly. Current Opinion in Infectious Diseases, 2023, vol. 36, no. 2, pp. 102-108. https://doi.org/10.1097/QCO.0000000000000907
Oyebode, Olajumoke Arinola, Sandy Winfield Jere, and Nicolette Nadene Houreld. Current therapeutic modalities for the management of chronic diabetic wounds of the foot. Journal of diabetes research, 2023, vol. 2023. https://doi.org/10.1155/2023/1359537
Dana, Ali N., and William A. Bauman. Bacteriology of pressure ulcers in individuals with spinal cord injury: What we know and what we should know. The journal of spinal cord medicine, 2015, vol. 38, no. 2, pp. 147-160. https://doi.org/10.1179/2045772314Y.0000000234
Lahlou, Yassine Ben, Abdelouahab Erraji, Elmostapha Benaissa, Mariama Chadli, Mostapha Elouennass. Isolation of Pasteurella pneumotropica in a Hand Phlegmon Following a Human Bite. Cureus, 2023, vol. 15, no. 12. https://doi.org/10.7759/cureus.51408
Mahrach, Y., N. Mourabit, A. Arakrak, M. Bakkali, and A. Laglaoui. Phenotypic and molecular study of carbapenemase-producing Enterobacteriaceae in a regional hospital in northern Morocco. J Clin Med Sci., 2019, vol. 3, 113. https://doi.org/10.35248/2593-9947.19.3.113
Suay-García, Beatriz, and María Teresa Pérez-Gracia. Present and future of carbapenem-resistant Enterobacteriaceae infections. Advances in clinical immunology, medical microbiology, COVID-19, and big data, 2021, pp. 435-456.
Haji, Sayran Hamad, Safaa Toma Hanna Aka, and Fattma A. Ali. Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS One, 2021, vol. 16, no. 11, e0259005. https://doi.org/10.1371/journal.pone.0259005
Aurilio, Caterina, Pasquale Sansone, Manlio Barbarisi, Vincenzo Pota, Luca Gregorio Giaccari, Francesco Coppolino, Alfonso Barbarisi, Maria Beatrice Passavanti, and Maria Caterina Pace. Mechanisms of action of carbapenem resistance. Antibiotics, 2022, vol. 11, no. 3, 421. https://doi.org/10.3390/antibiotics11030421
Kruse, Eva-Brigitta, Ute Aurbach, and Hilmar Wisplinghoff. Carbapenem-resistant Enterobacteriaceae: laboratory detection and infection control practices. Current infectious disease reports, 2013, vol. 15, no. 6, pp. 549-558. https://doi.org/10.1007/s11908-013-0373-x
Al-Zahrani, Ibrahim A. Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories: A review of current challenges. Saudi medical journal, 2018, vol. 39, no. 9, pp. 861-872. https://doi.org/10.15537/smj.2018.9.22840
Zhang, Jingjia, Peiyao Jia, Ying Zhu, Ge Zhang, Yingchun Xu, and Qiwen Yang. Performance evaluation of BD phoenix NMIC-413 antimicrobial susceptibility testing panel for imipenem, meropenem, and ertapenem against clinical carbapenem-resistant and carbapenem-susceptible enterobacterales. Frontiers in Medicine, 2021, vol. 8, 643194. https://doi.org/10.3389/fmed.2021.643194
Park, Byeol Yi, Demiana Mourad, Jun Sung Hong, Eun-Jeong Yoon, Dokyun Kim, Hyukmin Lee, and Seok Hoon Jeong. Performance evaluation of the newly developed BD phoenix NMIC-500 panel using clinical isolates of gram-negative bacilli. Annals of laboratory medicine, 2019, vol. 39, no. 5, 470. https://doi.org/10.3343/alm.2019.39.5.470
Jonas, Daniel, Sandra Reuter, Sarah Klassen, Sabine Weber, Marion Buck, Tommaso Giani, Gian Maria Rossolini, and Hajo Grundmann. Evaluation of the BD Phoenix CPO detect panel for prediction of Ambler class carbapenemases. Scientific Reports, 2021, vol. 11, no. 1, 13150. https://doi.org/10.1038/s41598-021-92336-3
Elshamy, Ann A., and Khaled M. Aboshanab. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future science OA, 2020, vol. 6, no. 3, FSO438. https://doi.org/10.2144/fsoa-2019-0098
Hasan, Sarah Ahmed, Ibrahim Saleh, and Hager Ali. Bacteriological and Molecular Detection of Staphylococcus Aureus and its Resistance to Methicillin among Specimens from Kirkuk Community. Annals of the Romanian Society for Cell Biology, 2021, vol. 25, no. 7, pp. 461-473. http://annalsofrscb.ro/index.php/journal/article/view/9848
Ahmed Hasan, S., and M. Mohammed Bakr. Bacteriological and molecular detection of Klebsiella oxytoca and its resistance to antibiotics among clinical specimens from Kirkuk, Iraq. Archives of Razi Institute, 2022, vol. 77, no. 5, pp. 1521-1525. https://doi.org/10.22092/ari.2022.357753.2095
Ahmed Hasan, S., Fakhraddin T Raheem, and H. Mohammed Abdulla. Phenotypic, antibiotyping, and molecular detection of Klebsiella pneumoniae isolates from clinical specimens in Kirkuk, Iraq. Archives of Razi Institute, 2021, vol. 76, no. 4, pp. 1061-1067. https://doi.org/10.22092/ari.2021.355770.1721
Hasan, Sarah Ahmed, Waad Mahmood Raoof, and Shwan kamal Rachid. A Systematic Review: The Current Status of Carbapenem Resistance In Iraq. World Bulletin of Public Health, 2022, vol. 13, pp. 88-94. https://scholarexpress.net/index.php/wbph/article/view/1260/1137
Berneking, Laura, Anna Both, Benjamin Berinson, Armin Hoffmann, Marc Lütgehetmann, Martin Aepfelbacher, and Holger Rohde. Performance of the BD Phoenix CPO detect assay for detection and classification of carbapenemase-producing organisms. European Journal of Clinical Microbiology & Infectious Diseases, 2021, vol. 40, pp. 979-985. https://doi.org/10.1007/s10096-020-04094-1
Croxatto, A., A. T. Coste, T. Pillonel, C. Bertelli, G. Greub, and G. Prod'hom. Evaluation of the BD Phoenix™ CPO Detect Test for the detection of carbapenemase producers. Clinical Microbiology and Infection, 2020, vol. 26, no. 5, pp. 644.e9-644.e15. https://doi.org/10.1016/j.cmi.2019.10.002
Hombach, Michael, Barbara von Gunten, Claudio Castelberg, and Guido V. Bloemberg. Evaluation of the Rapidec Carba NP test for detection of carbapenemases in Enterobacteriaceae. Journal of clinical microbiology, 2015, vol. 53, no. 12, pp. 3828-3833. https://doi.org/10.1128/JCM.02327-15
Poirel, Laurent, and Patrice Nordmann. Rapidec Carba NP test for rapid detection of carbapenemase producers. Journal of clinical microbiology, 2015, vol. 53, no. 9, pp. 3003-3008. https://doi.org/10.1128/JCM.00977-15
Mancini, Stefano, Nicolas Kieffer, Laurent Poirel, and Patrice Nordmann. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of Carbapenemase-producing Enterobacteriaceae. Diagnostic microbiology and infectious disease, 2017, vol. 88, no. 4, pp. 293-297. https://doi.org/10.1016/j.diagmicrobio.2017.05.006
Bracco, Silvia, Roberta Migliavacca, Beatrice Pini, Nicoletta Corbo, Elisabetta Nucleo, Gioconda Brigante, Aurora Piazza, Piero Micheletti, and Francesco Luzzaro. Evaluation of Brilliance CRE agar for the detection of carbapenem-resistant Gram-negative bacteria. New Microbiol, 2013, vol. 36, no. 2, pp. 181-186. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5f0d4768c7dbfaa31deeb2b67d242b690943acf6
Kotsakis, Stathis D., Efthymia Petinaki, Emma Scopes, Eirini Siatravani, Vivi Miriagou, and Eva Tzelepi. Laboratory evaluation of Brilliance™ CRE Agar for screening carbapenem-resistant Enterobacteriaceae: Performance on a collection of characterised clinical isolates from Greece. Journal of Global Antimicrobial Resistance, 2013, vol. 1, no. 2, pp. 85-90. https://doi.org/10.1016/j.jgar.2013.03.004
Genç, Serpil, Fetiye Kolaylı, and Eda Yazıcı Özçelik. Molecular characterization of carbapenemase producing Klebsiella pneumoniae strains by multiplex PCR and PFGE methods: The first K. pneumoniae isolates co-producing OXA-48/KPC and KPC/NDM in Turkey. Journal of Infection and Chemotherapy, 2022, vol. 28, no. 2, pp. 192-198. https://doi.org/10.1016/j.jiac.2021.10.009
Oueslati, Saoussen, Cécile Emeraud, Victor Grosperrin, Marc Levy, Garance Cotellon, Elodie Creton, Lauraine Gauthier, Rémy A. Bonnin, Thierry Naas, and Laurent Dortet. Polyclonal dissemination of NDM-1-and NDM-9-producing Escherichia coli and Klebsiella pneumoniae in French Polynesia. Antimicrobial agents and chemotherapy, 2021, vol. 65, no. 4, pp. 10-1128. https://doi.org/10.1128/aac.02437-20
Al-Abdely, Hail, Raed AlHababi, Hebah Mahmoud Dada, Hala Roushdy, Mishaal Mohammed Alanazi, Ali Abdullah Alessa, Niveen Mohamed Gad et al. Molecular characterization of carbapenem-resistant Enterobacterales in thirteen tertiary care hospitals in Saudi Arabia. Annals of Saudi Medicine, 2021, vol. 41, no. 2, pp. 63-70. https://doi.org/10.5144/0256-4947.2021.63
Şimşek, Merih, Cengiz Demir, and Esra Şeker. Investigation of New Delhi metallo-beta-lactamase-1 (blandm-1) gene in carbapenem-resistant Enterobacterales strains isolated from a university hospital in Turkey. Medicine Science, 2021, vol. 10, no. 2, pp. 571-576. https://doi.org/10.5455/medscience.2021.04.110
Amereh, Samira, Fatemeh Zeynali Kelishomi, Fatemeh Ghayaz, Amir Javadi, Amir Peymani, Fatemeh Fardsanei, Ehsan Aali, and Farhad Nikkhahi. Activity of meropenem-vaborbactam against different beta-lactamase producing Klebsiella pneumoniae and Escherichia coli isolates in Iran. Acta Microbiologica et Immunologica Hungarica, 2022, vol. 69, no. 3, pp. 201-208. https://doi.org/10.1556/030.2022.01782
Jalal Ahmed, Heshu, Ahmad H Ibrahim, Sawsan S Al-Rawi, Aryan R Ganjo, and Hataw Fryad Saber. Molecular Characterization of Carbapenem resistant Escherichia coli and Klebsiella pneumoniae in Erbil, Iraq. Journal of Population Therapeutics and Clinical Pharmacology, 2023, vol. 30, no. 4, pp. 457-463. https://doi.org/10.47750/jptcp.2023.30.04.044
Raheem, Tara Fakhraddin, and Sarah Ahmed Hasan Ali. Prevalence and Multi-Drug Resistance Patterns of Uropathogenic E. coli isolated from Women Patients in Kirkuk city, Iraq. Iranian Journal of Medical Microbiology, 2022, vol. 16, no. 6, pp. 609-614. http://dx.doi.org/10.30699/ijmm.16.6.609
Copyright (c) 2024 Sarah Ahmed Hasan, Waad Mahmood Raoof, Khaled Khalil Ahmed
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.