Бактериоцины для сельского хозяйства и аквакультуры
Аннотация
Обоснование. Обострение проблемы антимикробной резистентности, вызванной нерациональным использованием антибиотиков в сельском хозяйстве и аквакультуре, обуславливает необходимость поиска устойчивых и безопасных альтернатив. Бактериоцины представляют собой рибосомно синтезируемые антимикробные пептиды бактериального происхождения – класс природных соединений для борьбы с резистентными патогенами, обладающий минимальным воздействием на окружающую среду. В данном обзоре исследуется комплексный потенциал применения бактериоцинов в качестве альтернативы антибиотикам. Проведен детальный анализ структурного разнообразия, подходов к классификации и установленных механизмов антимикробного действия, включая нарушение целостности клеточной мембраны, ингибирование синтеза клеточной стенки, а также подавление синтеза нуклеиновых кислот и белков. Определены ключевые продуцирующие бактериоцины роды (Bacillus, Streptomyces и Pseudomonas) и их биологически активные метаболиты. Проанализировано применение бактериоцинов в сельском хозяйстве, в частности их роль в качестве агентов биоконтроля фитопатогенов, стимуляторов роста растений, а также средств улучшения здоровья и продуктивности сельскохозяйственных животных и птиц. Рассмотрен их потенциал в аквакультуре для контроля заболеваний (направленных против таких патогенов, как Vibrio spp., Aeromonas spp., Yersinia ruckeri), улучшения качества воды и консервации кормов, что способствует сокращению зависимости от превентивного использования антибиотиков. Несмотря на значительные достижения, сохраняются проблемы, связанные с оценкой эффективности in vivo, разработкой систем доставки, возможностью развития резистентности и регуляторными аспектами. Решение этих вопросов является ключевым условием для реализации потенциала бактериоцинов в качестве экологически безопасных инструментов обеспечения продовольственной безопасности и устойчивого развития наземных и аквакультурных систем.
Цель. Провести комплексный анализ потенциала применения бактериоцинов в качестве альтернативы антибиотикам в сельском хозяйстве и аквакультуре, обобщив данные об их классификации, механизмах действия, основных продуцентах и направлениях использования.
Материалы и методы. Проведен обзор и анализ современных научных литературных источников, посвященных бактериоцинам, их продуцентам (включая роды Bacillus, Streptomyces, Pseudomonas), механизмам антимикробного действия и практическому применению в агросекторе и аквакультуре.
Результаты. Систематизированы данные о структурном разнообразии и классификации бактериоцинов. Подробно описаны установленные механизмы их антимикробного действия, включая нарушение целостности клеточной мембраны, ингибирование синтеза клеточной стенки, нуклеиновых кислот и белков. Выявлены ключевые роды бактерий-продуцентов и охарактеризованы их биологически активные метаболиты. Проанализированы возможности применения бактериоцинов в растениеводстве в качестве агентов биоконтроля фитопатогенов и стимуляторов роста растений, а также в животноводстве и птицеводстве для улучшения здоровья и продуктивности. Рассмотрен потенциал бактериоцинов в аквакультуре для контроля заболеваний (включая патогены Vibrio spp., Aeromonas spp., Yersinia ruckeri), улучшения качества воды и консервации кормов.
Заключение. Бактериоцины представляют собой экологичную альтернативу традиционным антибиотикам для повышения продуктивности и устойчивости агро- и аквасистем. Реализация их потенциала требует решения задач, связанных с оценкой эффективности in vivo, разработкой систем доставки, изучением рисков развития резистентности и преодолением регуляторных барьеров.
EDN: OXIRFN
Скачивания
Литература
Abdelhamed, H., Lawrence, M. L., & Karsi, A. (2018). Development and characterization of a novel live attenuated vaccine against enteric septicemia of catfish. Frontiers in Microbiology, 9, 1819. https://doi.org/10.3389/fmicb.2018.01819
Adedire, O. M., & Odeniyi, O. A. (2017). Antimicrobial activities of bacteriocin like extracellular metabolites produced by soil bacteria. Pharmaceutical and Biosciences Journal, 47–54.
Akter, N., Hashim, R., Pham, H. Q., Choi, S. D., Lee, D. W., Shin, J. H., & Rajagopal, K. (2020). Lactobacillus acidophilus antimicrobial peptide is antagonistic to Aeromonas hydrophila. Frontiers in Microbiology, 11, 570851. https://doi.org/10.3389/fmicb.2020.570851. EDN: https://elibrary.ru/KKMEDC
Alaoui Mdarhri, H., Benmessaoud, R., Yacoubi, H., Seffar, L., Guennouni Assimi, H., Hamam, M., & Kettani Halabi, M. (2022). Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics, 11(12), 1826. https://doi.org/10.3390/antibiotics11121826. EDN: https://elibrary.ru/GVKRCL
Alam, M. T., Merlo, M. E., Takano, E., & Breitling, R. (2010). Genome based phylogenetic analysis of Streptomyces and its relatives. Molecular Phylogenetics and Evolution, 54(3), 763–772. https://doi.org/10.1016/j.ympev.2009.11.019. EDN: https://elibrary.ru/NZHMUR
Alfatat, A., Amoah, K., Cai, J., Huang, Y., Fachri, M., Lauden, H. N., & Syaifiuddin, S. (2025). Sustainable aquaculture and sea ranching with the use of vaccines: A review. Frontiers in Marine Science, 11, 1526425. https://doi.org/10.3389/fmars.2024.1526425. EDN: https://elibrary.ru/TIZTVQ
Andryukov, B. G., Mikhaylov, V. V., Besednova, N. N., Zaporozhets, T. S., Bynina, M. P., & Matosova, E. V. (2018). The bacteriocinogenic potential of marine microorganisms. Russian Journal of Marine Biology, 44(6), 433–441. https://doi.org/10.1134/S1063074018060030. EDN: https://elibrary.ru/WUBAVN
Ansari, A., Zohra, R. R., Tarar, O. M., Qader, S. A. U., & Aman, A. (2018). Screening, purification and characterization of thermostable, protease resistant bacteriocin active against methicillin resistant Staphylococcus aureus (MRSA). BMC Microbiology, 18, 192. https://doi.org/10.1186/s12866-018-1321-6. EDN: https://elibrary.ru/BHCEUM
Arbulu, S., & Kjos, M. (2024). Revisiting the multifaceted roles of bacteriocins. Microbial Ecology, 87, 41. https://doi.org/10.1007/s00248-024-02357-4. EDN: https://elibrary.ru/PUERUB
Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., & Cotter, P. D. (2013). Ribosomally synthesized and post translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Natural Product Reports, 30(1), 108–160. https://doi.org/10.1039/C2NP20085F. EDN: https://elibrary.ru/RIJUXR
Aunpad, R., Sripong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., & Pipatsatitpong, D. (2011). Isolation and characterization of bacteriocin with anti Listeria and anti MRSA activity produced by food and soil isolated bacteria. African Journal of Microbiology Research, 5(24), 5297–5303. https://doi.org/10.5897/AJMR11.714
Bai, Y., Zhou, X., & Smith, D. L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5), 1774–1781. https://doi.org/10.2135/cropsci2003.1774
Ben Lagha, A., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, 22. https://doi.org/10.1186/s13567-017-0425-6. EDN: https://elibrary.ru/XFQDMM
Berić, T., Stanković, S., Draganić, V., Kojić, M., Lozo, J., & Fira, D. (2014). Novel antilisterial bacteriocin Licheniocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. Journal of Applied Microbiology, 116(3), 502–510. https://doi.org/10.1111/jam.12387
Bhattacharyya, A., Mavrodi, O., Bhowmik, N., Weller, D., Thomashow, L., & Mavrodi, D. (2023). Bacterial biofilms as an essential component of rhizosphere plant microbe interactions. In Methods in Microbiology (pp. 3–48). Academic Press. https://doi.org/10.1016/bs.mim.2023.05.006
Bizani, D., Motta, A. S., Morrissy, J. A., Terra, R. M. S., Souto, A. A., & Brandelli, A. (2005). Antibacterial activity of Cerein 8A, a bacteriocin like peptide produced by Bacillus cereus. International Microbiology, 8(2), 125–131. EDN: https://elibrary.ru/LVNOJB
Butt, U. D., Khan, S., Liu, X., Sharma, A., Zhang, X., & Wu, B. (2024). Present status, limitations, and prospects of using Streptomyces bacteria as a potential probiotic agent in aquaculture. Probiotics and Antimicrobial Proteins, 16, 426–442. https://doi.org/10.1007/s12602-023-10155-6
Chepsergon, J., & Moleleki, L. N. (2023). Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 73, 102297. https://doi.org/10.1016/j.mib.2023.102297. EDN: https://elibrary.ru/YELOGU
Chen, X., Liu, H., Liu, S., & Mao, J. (2024). Impact of bacteriocins on multidrug resistant bacteria and their application in aquaculture disease prevention and control. Reviews in Aquaculture, 16(3), 1286–1307. https://doi.org/10.1111/raq.12896. EDN: https://elibrary.ru/HCIVPR
Cheruvari, A., & Kammara, R. (2025). Bacteriocins future perspectives: Substitutes to antibiotics. Food Control, 168, 110834. https://doi.org/10.1016/j.foodcont.2025.110834. EDN: https://elibrary.ru/UFEDEK
Cintas, L. M., Casaus, M. P., Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7(4), 281–305. https://doi.org/10.1106/R8DEP6HU CLXP 5RYT
Colorni, A. (1992). A systemic mycobacteriosis in the European sea bass Dicentrarchus labrax cultured in Eilat (Red Sea). Israeli Journal of Aquaculture Bamidgeh, 44, 75–81.
Contente, D., Díaz Rosales, P., Feito, J., Díaz Formoso, L., Docando, F., Simón, R., & Tafalla, C. (2023). Immunomodulatory effects of bacteriocinogenic and non bacteriocinogenic Lactococcus cremoris of aquatic origin on rainbow trout (Oncorhynchus mykiss, Walbaum). Frontiers in Immunology, 14, 1178462. https://doi.org/10.3389/fimmu.2023.1178462. EDN: https://elibrary.ru/GKJTJQ
Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), e0171642. https://doi.org/10.1371/journal.pone.0171642
Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777–788. https://doi.org/10.1038/nrmicro1273. EDN: https://elibrary.ru/LSKYHJ
Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocins — a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937. EDN: https://elibrary.ru/RGZIDF
Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093. https://doi.org/10.1002/jcla.24093. EDN: https://elibrary.ru/WVQQDT
de Freire Bastos, M. C., Coelho, M. L. V., & da Silva Santos, O. C. (2015). Resistance to bacteriocins produced by Gram positive bacteria. Microbiology, 161(4), 683–700. https://doi.org/10.1099/mic.0.082289 0
Delghandi, M. R., El Matbouli, M., & Menanteau Ledouble, S. (2020). Renibacterium salmoninarum — The causative agent of bacterial kidney disease in salmonid fish. Pathogens, 9(10), 845. https://doi.org/10.3390/pathogens9100845. EDN: https://elibrary.ru/EGDNVG
Diamant, A., Banet, A., Ucko, M., Colorni, A., Knibb, W., & Kvitt, H. (2000). Mycobacteriosis in wild rabbitfish Siganus rivulatus associated with cage farming in the Gulf of Eilat, Red Sea. Diseases of Aquatic Organisms, 39, 211–219. https://doi.org/10.3354/dao039211
Dziva, F., & Stevens, M. P. (2008). Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathology, 37(4), 355–366. https://doi.org/10.1080/03079450802216652
Fathizadeh, H., Pakdel, F., Saffari, M., Esmaeili, D., Heravi, M. M., Dao, S., Ganbarov, K., & Kafil, H. S. (2022). Bacteriocins: Recent advances in its application as an antimicrobial alternative. Current Pharmaceutical Biotechnology, 23(8), 1028–1040. https://doi.org/10.2174/1389201022666210907121254. EDN: https://elibrary.ru/HMNLHQ
Fischer, S., López Ramírez, V., & Asconapé, J. (2024). Historical advancements in understanding bacteriocins produced by rhizobacteria for their application in agriculture. Rhizosphere, 29, 100908. https://doi.org/10.1016/j.rhisph.2024.100908. EDN: https://elibrary.ru/RXOEMR
Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin based strategies for food biopreservation. International Journal of Food Microbiology, 120(1–2), 51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001
Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012). Occurrence of sulfonamide and tetracycline resistant bacteria and resistance genes in aquaculture environment. Water Research, 46(7), 2355–2364. https://doi.org/10.1016/j.watres.2012.02.004
Gholizadeh, S. S., Baserisalehi, M., & Bahador, N. (2013). Study on bioactive compounds produced by soil origin Brevibacillus spp. Nature Environment and Pollution Technology, 12(2), 209–214.
Gray, E. J., Di Falco, M., Souleimanov, A., & Smith, D. L. (2006). Proteomic analysis of the bacteriocin Thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiology Letters, 255(1), 27–32. https://doi.org/10.1111/j.1574 6968.2005.00054.x
Gu, Q. (2023). Agriculture. In Bacteriocins (pp. 127–152). Springer. https://doi.org/10.1007/978 981 99 2661 9_7
Güllüce, M., Karadayı, M., & Barış, Ö. (2013). Bacteriocins: Promising natural antimicrobials. Local Environment, 3(8), 1016–1027.
Hafeez, F. Y., Naeem, F. I., Naeem, R., Zaidi, A. H., & Malik, K. A. (2005). Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environmental and Experimental Botany, 54(2), 142–147. https://doi.org/10.1016/j.envexpbot.2004.06.009
He, L., Chen, W., & Liu, Y. (2006). Production and partial characterization of bacteriocin like peptides by Bacillus licheniformis ZJU12. Microbiological Research, 161(4), 321–326. https://doi.org/10.1016/j.micres.2005.12.003
Heinzinger, L. R., Pugh, A. R., Wagner, J. A., & Otto, M. (2023). Evaluating the translational potential of bacteriocins as an alternative treatment for Staphylococcus aureus infections in animals and humans. Antibiotics, 12(8), 1256. https://doi.org/10.3390/antibiotics12081256. EDN: https://elibrary.ru/PVHBCP
Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92(2), 370–374. https://doi.org/10.3382/ps.2012 02528
Jayasree, L., Janakiram, P., & Madhavi, R. (2006). Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). Journal of the World Aquaculture Society, 37(4), 523–532. https://doi.org/10.1111/j.1749 7345.2006.00066.x
Jones, S. E., & Elliot, M. A. (2017). Streptomyces exploration: Competition, volatile communication and new bacterial behaviours. Trends in Microbiology, 25(6), 522–531. https://doi.org/10.1016/j.tim.2017.02.001
Józefiak, D., Kierończyk, B., Juśkiewicz, J., Zduńczyk, Z., Rawski, M., Długosz, J., & Højberg, O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS ONE, 8(12), e85347. https://doi.org/10.1371/journal.pone.0085347. EDN: https://elibrary.ru/SOYWEH
Kamoun, F., Mejdoub, H., Aouissaoui, H., Reinbolt, J., Hammami, A., & Jaoua, S. (2005). Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology, 98(4), 881–888. https://doi.org/10.1111/j.1365 2672.2004.02522.x
Kemung, H. M., Tan, L. T. H., Khan, T. M., Chan, K. G., Pusparajah, P., Goh, B. H., & Lee, L. H. (2018). Streptomyces as a prominent resource of future anti MRSA drugs. Frontiers in Microbiology, 9, 2221. https://doi.org/10.3389/fmicb.2018.02221
Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1–3), 39–85. https://doi.org/10.1111/j.1574 6976.1993.tb00012.x
Klein, E. Y., Van Boeckel, T. P., Martinez, E. P., Pant, S., Gandra, S., Levin, S. A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 115(15), E3463–E3470. https://doi.org/10.1073/pnas.1717295115. EDN: https://elibrary.ru/EIOTNZ
Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171–177. https://doi.org/10.1016/j.micpath.2018.12.039
Lafuente, I., Sevillano, E., Peña, N., Cuartero, A., Hernández, P. E., Cintas, L. M., & Borrero, J. (2024). Production of Pumilarin and a novel circular bacteriocin, Altitudin A, by Bacillus altitudinis ECC22, a soil derived bacteriocin producer. International Journal of Molecular Sciences, 25(4), 2020. https://doi.org/10.3390/ijms25042020. EDN: https://elibrary.ru/JSHFCH
Laxminarayan, R., Van Boeckel, T. P., & Teillant, A. (2015). The economic costs of withdrawing antimicrobial growth promoters from the livestock sector. OECD Food, Agriculture and Fisheries Papers, 78, 1–45. https://doi.org/10.1785/5js64kst5wvl en
Lee, K., Gray, E. J., Mabood, F., Jung, W. J., Charles, T., Clark, S. R. D., & Smith, D. L. (2009). The Class IId bacteriocin Thuricin 17 increases plant growth. Planta, 229(4), 747–755. https://doi.org/10.1007/s00425 008 0870 6. EDN: https://elibrary.ru/YIVVPG
Li, Y., Yan, J., Chen, Z., Gu, Q., & Li, P. (2022). Antibacterial effects of bacteriocin PLNC8 against Helicobacter pylori and its potential mechanism of action. Foods, 11(9), 1235. https://doi.org/10.3390/foods11091235. EDN: https://elibrary.ru/HWIXWF
Liu, G., Nie, R., Liu, Y., Li, X., Duan, J., Hao, X., & Zhang, J. (2022). Bacillus subtilis BS 15 effectively improves Plantaricin production and the regulatory biosynthesis in Lactiplantibacillus plantarum RX 8. Frontiers in Microbiology, 12, 772546. https://doi.org/10.3389/fmicb.2021.772546. EDN: https://elibrary.ru/CTZAFU
Liu, S., Deng, S., Liu, H., Tang, L., Wang, M., Xin, B., & Li, F. (2022). Four novel leaderless bacteriocins, Bacin A1, A2, A3, and A4 exhibit potent antimicrobial and antibiofilm activities against methicillin resistant Staphylococcus aureus. Microbiology Spectrum, 10(3), e00945 22. https://doi.org/10.1128/spectrum.00945 22. EDN: https://elibrary.ru/EPQRNV
Lotz, W., & Mayer, F. (1972). Isolation and characterization of a bacteriophage tail like bacteriocin from a strain of Rhizobium. Journal of Virology, 9(1), 160–173.
Mann, A., Nehra, K., Rana, J. S., & Dahiya, T. (2021). Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences, 2, 100030. https://doi.org/10.1016/j.crmicr.2021.100030. EDN: https://elibrary.ru/QGCSYY
Marković, K. G., Grujović, M. Ž., Koraćević, M. G., Nikodijević, D. D., Milutinović, M., Semedo Lemsaddek, T., & Djilas, M. (2022). Colicins and microcins produced by Enterobacteriaceae: Characterization, mode of action, and putative applications. International Journal of Environmental Research and Public Health, 19(18), 11825. https://doi.org/10.3390/ijerph191811825. EDN: https://elibrary.ru/IZKDNJ
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(10), 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051
Martínez, B., García, P., & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 56, 1–6. https://doi.org/10.1016/j.copbio.2 Newton.07.007. EDN: https://elibrary.ru/YKCBRB
Mazurek Popczyk, J., Pisarska, J., Bok, E., & Baldy Chudzik, K. (2020). Antibacterial activity of bacteriocinogenic commensal Escherichia coli against zoonotic strains resistant and sensitive to antibiotics. Antibiotics, 9(7), 411. https://doi.org/10.3390/antibiotics9070411. EDN: https://elibrary.ru/HSSJWX
Mercado, V., & Olmos, J. (2022). Bacteriocin production by Bacillus species: Isolation, characterization, and application. Probiotics and Antimicrobial Proteins, 14(6), 1151–1169. https://doi.org/10.1007/s12602 022 09966 w. EDN: https://elibrary.ru/WTDSGD
Mohamad, A., Zamri Saad, M., Amal, M. N. A., Al Saari, N., Monir, M. S., Chin, Y. K., & Md Yasin, I. S. (2021). Vaccine efficacy of a newly developed feed based whole cell polyvalent vaccine against vibriosis, streptococcosis and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Vaccines, 9(4), 368. https://doi.org/10.3390/vaccines9040368. EDN: https://elibrary.ru/LHFQDC
Mojgani, N. (2017). Bacteriocin producing rhizosphere bacteria and their potential as a biocontrol agent. In V. Meena, P. Mishra, J. Bisht, & A. Pattanayak (Eds.), Rhizotrophs: Plant Growth Promotion to Bioremediation (pp. 165–181). Springer. https://doi.org/10.1007/978 981 10 4862 3_8
Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini review. Molecules, 22(8), 1255. https://doi.org/ 10.3390/molecules22081255
Nazari, M., & Smith, D. L. (2020). A PGPR produced bacteriocin for sustainable agriculture: A review of Thuricin 17 characteristics and applications. Frontiers in Plant Science, 11, 916. https://doi.org/10.3389/fpls.2020.00916. EDN: https://elibrary.ru/HRLYMR
Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891. https://doi.org/10.1155/2020/4374891. EDN: https://elibrary.ru/FEXAVK
Newman, S. G. (1993). Bacterial vaccines for fish. Annual Review of Fish Diseases, 3, 145–185. https://doi.org/10.1016/0959 8030(93)90033 5
Nilsson, L., Huss, H. H., & Gram, L. (1997). Inhibition of Listeria monocytogenes on cold smoked salmon by nisin and carbon dioxide atmosphere. International Journal of Food Microbiology, 38(2–3), 217–227. https://doi.org/10.1016/S0168 1605(97)00105 6
Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2004). Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World Journal of Microbiology and Biotechnology, 20(1), 51–56. https://doi.org/10.1023/B
Oscáriz, J. C., & Pisabarro, A. G. (2000). Characterisation and mechanism of action of Cerein 7, a bacteriocin produced by Bacillus cereus Bc7. Journal of Applied Microbiology, 89(1), 1–10. https://doi.org/10.1046/j.1365 2672.2000.01064.x
Paškevičius, Š., Gleba, Y., & Ražanskienė, A. (2022). Stenocins: Novel modular bacteriocins from opportunistic pathogen Stenotrophomonas maltophilia. Journal of Biotechnology, 351, 9–12. https://doi.org/10.1016/j.jbiotec.2022.05.002. EDN: https://elibrary.ru/CNPQRJ
Pereira, W. A., Mendonça, C. M. N., Urquiza, A. V., Marteinsson, V.Þ., LeBlanc, J. G., Cotter, P. D., & Oliveira, R. P. S. (2022). Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms, 10(9), 1705. https://doi.org/10.3390/microorganisms10091705. EDN: https://elibrary.ru/ORKPDO
Pfister, H., & Lodderstaedt, G. (1977). Adsorption of a phage tail like bacteriocin to isolated lipopolysaccharide of Rhizobium. Journal of General Virology, 37(2), 337–347. https://doi.org/10.1099/0022 1317 37 2 337
Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., & Singh, I. S. B. (2020). Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75(9), 1497–1517. https://doi.org/10.2478/s11756 020 00456 4. EDN: https://elibrary.ru/LEKYQZ
Prudent, M., Salon, C., Souleimanov, A., Emery, R. J. N., & Smith, D. L. (2014). Soybean is less impacted by water stress using Bradyrhizobium japonicum and Thuricin 17 from Bacillus thuringiensis. Agronomy for Sustainable Development, 35(2), 749–757. https://doi.org/10.1007/s13593 014 0256 z. EDN: https://elibrary.ru/URWTDX
Promrug, D., Wittayacom, K., Nathapanan, N., Dong, H. T., Thongyoo, P., Unajak, S., & Arthan, D. (2023). Cocultures of Enterococcus faecium and Aeromonas veronii induce the secretion of bacteriocin like substances against Aeromonas. Journal of Agricultural and Food Chemistry, 71(43), 16194–16203. https://doi.org/10.1021/acs.jafc.3c04927. EDN: https://elibrary.ru/TNSZKC
Qin, Y., Wang, Y., He, Y., Zhang, Y., She, Q., Chai, Y., & Shang, Q. (2019). Characterization of Subtilin L Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L Q11 isolated from orchard soil. Frontiers in Microbiology, 10, 484. https://doi.org/10.3389/fmicb.2019.00484
Rabetafika, H. N., Razafindralambo, A., Ebenso, B., & Razafindralambo, H. L. (2023). Probiotics as antibiotic alternatives for human and animal applications. Encyclopedia, 3(2), 561–581. https://doi.org/10.3390/encyclopedia3020039. EDN: https://elibrary.ru/YWWWKF
Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology, 56, 117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024. EDN: https://elibrary.ru/GKPWIN
Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1), 1–27. https://doi.org/10.1016/j.aaf.2019.12.001. EDN: https://elibrary.ru/QPXDYY
Saleem, F., Ahmad, S., Yaqoob, Z., & Rasool, S. A. (2009). Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pakistan Journal of Pharmaceutical Sciences, 22(3), 251–259.
Samac, D. A., Willert, A. M., McBride, M. J., & Kinkel, L. L. (2003). Effects of antibiotic producing Streptomyces on nodulation and leaf spot in alfalfa. Applied Soil Ecology, 22(1), 55–66. https://doi.org/10.1016/S0929 1393(02)00109 1. EDN: https://elibrary.ru/BBSNLZ
Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026. EDN: https://elibrary.ru/KHZQVP
Schofs, L., Sparo, M. D., & Sánchez Bruni, S. F. (2020). Gram positive bacteriocins: Usage as antimicrobial agents in veterinary medicine. Veterinary Research Communications, 44(3–4), 89–100. https://doi.org/10.1007/s11259 020 09777 w. EDN: https://elibrary.ru/SSYWJX
Shafique, B., Ranjha, M. M. A. N., Murtaza, M. A., Walayat, N., Nawaz, A., Khalid, W., & Ameer, K. (2023). Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms, 11(1), 85. https://doi.org/10.3390/microorganisms11010085. EDN: https://elibrary.ru/PTCCFJ
Sharma, K., Kaur, S., Singh, R., & Kumar, N. (2021). Classification and mechanism of bacteriocin induced cell death: A review. Journal of Microbiology, Biotechnology and Food Sciences, 11(1), e3733. https://doi.org/10.55251/jmbfs.3733. EDN: https://elibrary.ru/LJGJAW
Solis Balandra, M. A., & Sanchez Salas, J. L. (2024). Classification and multi functional use of bacteriocins in health, biotechnology, and food industry. Antibiotics, 13(7), 666. https://doi.org/10.3390/antibiotics13070666. EDN: https://elibrary.ru/RLBQRA
Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89–101. https://doi.org/10.1586/14760584.4.1.89
Subramanian, S. (2014). Mass spectometry based proteome profiling to understand the effects of lipo chito oligasaccharide and thuricin 17 in Arabidopsis thaliana and Glycine max under salt stress (Master’s thesis). McGill University, Montreal, QC, Canada.
Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome—From an agriculture perspective. Frontiers in Plant Science, 6, 909. https://doi.org/10.3389/fpls.2015.00909
Sugrue, I., Ross, R. P., & Hill, C. (2024). Bacteriocin diversity, function, discovery and application as antimicrobials. Nature Reviews Microbiology, 22(9), 556–571. https://doi.org/10.1038/s41579 024 01038 w. EDN: https://elibrary.ru/TAGRWG
Sumon, T. A., Hussain, M. A., Sumon, M. A. A., Jang, W. J., Abellan, F. G., Sharifuzzaman, S. M., et al. (2022). Functionality and prophylactic role of probiotics in shellfish aquaculture. Aquaculture Reports, 25, 101220. https://doi.org/10.1016/j.aqrep.2022.101220. EDN: https://elibrary.ru/JLRHHQ
Takeuchi, M., Fujiwara Nagata, E., Katayama, T., & Suetake, H. (2021). Skin bacteria of rainbow trout antagonistic to the fish pathogen Flavobacterium psychrophilum. Scientific Reports, 11(1), 7518. https://doi.org/10.1038/s41598 021 87107 z. EDN: https://elibrary.ru/QYKSHZ
Timbermont, L., De Smet, L., Van Nieuwerburgh, F., Parreira, V. R., Van Driessche, G., Haesebrouck, F., & Van Immerseel, F. (2014). Perfrin, a novel bacteriocin associated with NetB positive Clostridium perfringens strains from broilers with necrotic enteritis. Veterinary Research, 45(1), 40. https://doi.org/10.1186/1297 9716 45 40. EDN: https://elibrary.ru/YLZGSJ
Torshin, I. Y., & Gromova, O. A. (2023). Comparative chemomicrobiomic analysis of bacteriocins. Farmakoekonomika, 16(4), 643–656. https://doi.org/10.17749/2070 4909/farmakoekonomika.2023.192. EDN: https://elibrary.ru/IESGDO
Toranzo, A. E., Romalde, J. L., Magariños, B., & Barja, J. L. (2009). Present and future of aquaculture vaccines against fish bacterial diseases. Options Méditerranéennes, 86, 155–176.
Triet, T. H., Tinh, B. T., Hau, L. V., Huong, T. V., & Binh, N. Q. (2019). Development and potential use of an Edwardsiella ictaluri wzz mutant as a live attenuated vaccine against enteric septicemia in Pangasius hypophthalmus (Tra catfish). Fish & Shellfish Immunology, 87, 87–95. https://doi.org/10.1016/j.fsi.2019.01.013
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
Vacheron, J., Heiman, C. M., & Keel, C. (2021). Live cell dynamics of production, explosive release and killing activity of phage tail like weapons for Pseudomonas kin exclusion. Communications Biology, 4(1), 87. https://doi.org/10.1038/s42003 020 01581 1. EDN: https://elibrary.ru/NPULSE
Verheul, A., Russell, N. J., van ’t Hof, R., Rombouts, F. M., & Abee, T. (1997). Modifications of membrane phospholipid composition in nisin resistant Listeria monocytogenes Scott A. Applied and Environmental Microbiology, 63(9), 3451–3457. https://doi.org/10.1128/aem.63.9.3451 3457.1997
Vilpišauskaitė, A. (2023). Bacteriocins active against plant pathogenic bacteria (Doctoral dissertation). Vilnius University, Vilnius, Lithuania.
Wang, J., Zhang, S., Ouyang, Y., & Li, R. (2019). Current developments of bacteriocins, screening methods and their application in aquaculture and aquatic products. Biocatalysis and Agricultural Biotechnology, 22, 101395. https://doi.org/10.1016/j.bcab.2019.101395
Wang, Y., Moon, A., Huang, J., Sun, Y., & Qiu, H. J. (2022). Antiviral effects and underlying mechanisms of probiotics as promising antivirals. Frontiers in Cellular and Infection Microbiology, 12, 928050. https://doi.org/10.3389/fcimb.2022.928050. EDN: https://elibrary.ru/RBAYSS
Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158
Wilson, R. A., Handley, B. A., & Beringer, J. E. (1998). Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biology and Biochemistry, 30(4), 413–417. https://doi.org/10.1016/S0038 0717(97)00129 1. EDN: https://elibrary.ru/AARQPL
Woo, C., Jung, S., Fugaban, J. I. I., Bucheli, J. E. V., Holzapfel, W. H., & Todorov, S. D. (2021). Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. Journal of Applied Microbiology, 131(3), 1226–1239. https://doi.org/10.1111/jam.15035. EDN: https://elibrary.ru/GTNZXQ
Woo, P. T. K., Bruno, D. W., & Lim, L. H. S. (Eds.). (2002). Diseases and disorders of finfish in cage culture (pp. x+354). CABI Publishing.
Wu, J., Wang, J., Li, Z., Guo, S., Li, K., Xu, P., & Zou, J. (2022). Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Critical Reviews in Environmental Science and Technology, 53(7), 847–864. https://doi.org/10.1080/10643389.2022.2094693. EDN: https://elibrary.ru/VGGLWF
Yanagida, F., Chen, Y. S., & Shinohara, T. (2006). Searching for bacteriocin producing lactic acid bacteria in soil. Journal of General and Applied Microbiology, 52(1), 21–28. https://doi.org/10.2323/jgam.52.21
Yang, H., Zhujin, D., Marana, M. H., Dalsgaard, I., Rzgar, J., Heidi, M., & Kurt, B. (2021). Immersion vaccines against Yersinia ruckeri infection in rainbow trout: Comparative effects of strain differences. Journal of Fish Diseases, 44(12), 1937–1950. https://doi.org/10.1111/jfd.13501. EDN: https://elibrary.ru/RBJKBR
Yang, S. (2025). Purification and expression of a novel bacteriocin, JUQZ 1, against Pseudomonas syringae pv. actinidiae (PSA), secreted by Brevibacillus laterosporus Wq 1, isolated from the rhizosphere soil of healthy kiwifruit. Frontiers in Microbiology, 16, 1666370. https://doi.org/10.3389/fmicb.2025.1666370. EDN: https://elibrary.ru/ENQZEQ
Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241. EDN: https://elibrary.ru/UTOHNV
Yang, W., Li, J., Yao, Z., & Li, M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Science of the Total Environment, 928, 171757. https://doi.org/10.1016/j.scitotenv.2024.171757. EDN: https://elibrary.ru/KEWWBR
Yimer Muktar, Y. M., Shimels Tesfaye, S. T., & Biruk Tesfaye, B. T. (2016). Present status and future prospects of fish vaccination: A review. Journal of Veterinary Science and Animal Husbandry, 4(3), 303.
Zalewska, M., Błażejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure Consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656. EDN: https://elibrary.ru/IMKVVW
Zhang, J., Liu, G., Shang, N., Cheng, W., Chen, S., & Li, P. (2009). Purification and partial amino acid sequence of Pentocin 31 1, an anti Listeria bacteriocin produced by Lactobacillus pentosus 31 1. Journal of Food Protection, 72(12), 2524–2529. https://doi.org/10.4315/0362 028X 72.12.2524. EDN: https://elibrary.ru/NBAVIV
Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), 553. https://doi.org/10.3390/antibiotics9090553. EDN: https://elibrary.ru/HGUCGS
Просмотров аннотации: 5
Copyright (c) 2025 Besarion Ch. Meskhi, Dmitry V. Rudoy, Anastasiya V. Olshevskaya, Denis A. Kozyrev, Victoria N. Shevchenko, Mary Yu. Odabashyan, Svetlana V. Teplyakova, Dmitry A. Dzhedirov

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.






















































