БИОИНДИКАЦИОННЫЕ ПОКАЗАТЕЛИ ФОНОВЫХ ВИДОВ РАСТЕНИЙ ПРИРОДНИКОВЫХ УРОЧИЩ КАК ОСНОВА ПРОСПЕКТИВНОГО БИОМОНИТОРИНГА
Аннотация
В Нечерноземье РФ более 14 лет создаётся база долговременных наблюдений за состоянием родников как наиболее ценного элемента уникальных ландшафтов экотонных зон. Выполненные многолетние исследования по биохимическим особенностям фоновых видов растений родниковых урочищ создали основу биоиндикации общего состояния ручьёв ключей по активности антиоксидантной системы у семи биоиндикаторов. цель работы – представить биохимические особенности фоновых видов урочищ родников и ручьёв для биоиндикации в системе проспективного биомониторинга родников. В результате применения маршрутных, биохимических методов исследования доказано, что для биомониторинговых исследований целесообразно применять показатели активности оксидоредуктаз фоновых видов родниковых урочищ ввиду индивидуальной видовой резистентности. Ряд чувствительности фоновых видов травянистых растений к значительной антропогенной нагрузке, в том числе и химическому загрязнению вод родников, основанной на степени уменьшения активности полифенолоксидазы: Agrostis stolonifera < Scirpus sylvaticus < Rorippa amphibia < Alisma plantago-aquatica < Lycopus europaeus < Leptodictyum riparium < Marchantia polymorpha. Ряд чувствительности растений к стрессовым факторам по степени увеличения каталазы (активности каталазы): Agrostis stolonifera > Scirpus sylvaticus > Rorippa amphibia > Alisma plantago-aquatica > Lycopus europaeus > Leptodictyum riparium > Marchantia polymorpha. Ряд чувствительности к общей антропогенной нагрузке, в том числе и по химическому загрязнению вод по степени уменьшения пероксидазы: Agrostis stolonifera < Scirpus sylvaticus < Rorippa amphibia < Alisma plantago-aquatica < Lycopus europaeus < Leptodictyum riparium < Marchantia polymorpha.
Скачивания
Литература
Список литературы
Воскресенская О.Л. Большой практикум по биоэкологи. Часть I. Йошкар-Ола, 2006. 107 с.
Колупаев Ю.Е., Рябчун Н.И., Вайнер А.А. и др. Активность антиоксилантных ферментов и содержание осмолитов в проростках озимых злаков при закаливании и криострессе // Физиология растений. 2015. Т. 62. № 4. С. 533-541.
Никерова К.М., Галибина Н.А. Влияние нитратного азота на пероксидазную активность в тканях Betula pendula var.carelica (Mercklin) // Сибирский лесной журнал. 2017. № 1. С. 15-24.
Рогожин В.В. Пероксидаза как компонент антиоксидантной системы живых организмов. СПб.: ГИОРД, 2004. 240 с.
Рогожин В.В., Рогожина Т.В. Практикум по физиологии и биохимии растений. СПб.: ГИОРД, 2013. 352 с.
Соболева О.А., Анищенко Л.Н. Комплексная оценка родниковых вод Брянской области в системе государственного мониторинга // Вестник РУДН. Серия Экология и безопасность жизнедеятельности. 2022. Т. 30. № 2. С. 127-142.
Anishchenko L.N, Borzdyko E.V., Dolganova M.V., Moskalenko I.V., Avramenko M.V. Biochemical indicators of woody plants in the diagnosis of air condition // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 962, 012005. https://doi.org/10.1088/1755-1315/962/1/012005
Anu Geetham Pkm, Malarvizhi A. Efficacy of the solvents on the phytochemical load and polyphenol content of the aquatic plant azollamicrophylla // Asian Journal of Pharmaceutical and Clinical Research. 2022. Vol. 15(6). https://doi.org/10.22159/ajpcr.2022.v15i6.43386
Inelova Z., Zayadan В., Zaparina Y., Aitzhan M., BOROS Е. Perspectives for the application of aquatic and semi-aquatic plants in biomonitoring of freshwater, saline and soda aquatic ecosystems // Pak. J. Bot. 2023. Vol. 55(3). P. 1099-1115. https://doi.org/10.30848/PJB2023-3(33)
Fahad S., Saud S., Chen Y., Wu C., Wang D. Abiotic Stress in Plants. BoD-Books on Demand. Nordstedt, Germany, 2021. 494 p.
Goncharuk Е. А., Zagoskina N. V. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review // Molecules. 2023. Vol. 28(9), 3921. https://doi.org/10.3390/molecules28093921
Kapoor D., Singh S., Kumar V., Romero R., Prasad R., Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS) // Plant Gene. 2019. Vol. 19, 100182. https://doi.org/10.1016/j.plgene.2019.100182
Kaur M., Nagpal A.K., Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas // Environmental Science and Pollution Research. 2017. Vol. 24(23). P. 18881-18895. https://doi.org/10.1007/s11356-017-9500-9
Kwak M. J., Lee J.K., Park S., Lim Y.J., Kim H., Nam Kim K.N., Je S.M., Park C.R. and Woo S.Y. Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake // Sustainability. 2020. Vol. 12, 3067. https://doi.org/10.3390/su12073067
Maksimović Т., Hasanagić D., Samelak I., Kukavica B. Class III peroxidase and polyphenol oxidase activities in aquatic macrophytes during vegetative period in Bardača a wetland // International Journal of Limnology. 2022. Vol. 58. https://doi.org/10.1051/limn/2022009
Manquián-Cerda K., Cruces E., Escudey M., Zúñiga G., Calderón R. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro // Ecotoxicol. Environ. Saf. 2018. Vol. 150. Р. 320-326. https://doi.org/10.1016/j.ecoenv.2017.12.050
Molnár V.E., Tóthmérész B., Szabó S., Simon E. Pollution assessment in urban areas using air pollution tolerance index of tree species // Air Pollution XXVI. WIT Transactions on Ecology and the Environment. 2018. Vol 230. P. 367-374. https://doi.org/10.2495/AIR180341
Nowak D.J., Hirabayashi S., Doyle M., McGovern M., Pasher J. Air pollution removal by urban forests in Canada and its effect on air quality and human health // Urban Forestry & Urban Greening. 2018. Vol. 29. Р. 40-48. https://doi.org/10.1016/j.ufug.2017.10.019
Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator // Antioxidants. 2020. Vol. 9. Р. 681. https://doi.org/10.3390/antiox9080681
Han D. Shen H., Duan W., Chen L. A review on particulate matter removal capacity by urban forests at different scales // Urban Forestry & Urban Greening. 2019. Vol. 48, 126565. https://doi.org/10.1016/j.ufug.2019.126565
Oyareme V., Osaji E.I.O. The Effects and Level of Catalase Enzyme Activity in Different Species of Aquatic Macrophytes and Their Families in Two Different Locations in Niger Delta, (Ikpoba River in Benin-City and Ethiope River in Abraka), Nigeria // Open Access Library Journal. 2021. Vol. 8. Р. 1-11. https://doi.org/10.4236/oalib.1107368
Zaghloul A., Saber M., Gadow S., Fikry A. Biological Indicators for Pollution Detection in Terrestrial and Aquatic Ecosystems // Bulletin of the National Research Centre. 2020. Vol. 44. Article number: 127. https://doi.org/10.1186/s42269-020-00385-x
Zhang P., Liu Y., Chen X., Yang Z., Zhu M. & Li Y. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method // Ecotoxicology and Environmental Safety. 2016. Vol. 132. P. 212-223.
References
Voskresenskaya O.L. Bol'shoy praktikum po bioekologi [Large workshop on bioecology]. Part I. Yoshkar-Ola, 2006, 107 p.
Kolupaev Yu.E., Ryabchun N.I., Vayner A.A. et al. Aktivnost' antioksilantnykh fermentov i soderzhanie osmolitov v prorostkakh ozimykh zlakov pri zakalivanii i kriostresse [Activity of antioxidant enzymes and osmolyte content in winter cereal seedlings during hardening and cryostr]. Fiziologiya rasteniy, 2015, vol. 62, no. 4, pp. 533-541.
Nikerova K.M., Galibina N.A. Vliyanie nitratnogo azota na peroksidaznuyu aktivnost' v tkanyakh Betula pendula var.carelica (Mercklin) [Effect of nitrate nitrogen on peroxidase activity in tissues of Betula pendula var.carelica (Mercklin)]. Sibirskiy lesnoy zhurnal, 2017, no. 1, pp. 15-24.
Rogozhin V.V. Peroksidaza kak komponent antioksidantnoy sistemy zhivykh organizmov [Peroxidase as a component of the antioxidant system of living organisms]. SPb.: GIORD, 2004, 240 p.
Rogozhin V.V., Rogozhina T.V. Praktikum po fiziologii i biokhimii rasteniy [Workshop on plant physiology and biochemistry]. SPb.: GIORD, 2013, 352 p.
Soboleva O.A., Anishchenko L.N. Kompleksnaya otsenka rodnikovykh vod Bryanskoy oblasti v sisteme gosudarstvennogo monitoringa [Comprehensive assessment of spring waters of the Bryansk region in the state monitoring system]. Vestnik RUDN. Seriya Ekologiya i bezopasnost' zhiznedeyatel'nosti, 2022, vol. 30, no. 2, pp. 127-142.
Anishchenko L.N, Borzdyko E.V., Dolganova M.V., Moskalenko I.V., Avramenko M.V. Biochemical indicators of woody plants in the diagnosis of air condition. IOP Conference Series: Earth and Environmental Science, 2022, vol. 962, 012005. https://doi.org/10.1088/1755-1315/962/1/012005
Anu Geetham Pkm, Malarvizhi A. Efficacy of the solvents on the phytochemical load and polyphenol content of the aquatic plant azollamicrophylla. Asian Journal of Pharmaceutical and Clinical Research, 2022, vol. 15(6). https://doi.org/10.22159/ajpcr.2022.v15i6.43386
Inelova Z., Zayadan В., Zaparina Y., Aitzhan M., BOROS Е. Perspectives for the application of aquatic and semi-aquatic plants in biomonitoring of freshwater, saline and soda aquatic ecosystems. Pak. J. Bot., 2023, vol. 55(3), pp. 1099-1115. https://doi.org/10.30848/PJB2023-3(33)
Fahad S., Saud S., Chen Y., Wu C., Wang D. Abiotic Stress in Plants. BoD-Books on Demand. Nordstedt, Germany, 2021, 494 p.
Goncharuk Е. А., Zagoskina N. V. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules, 2023, vol. 28(9), 3921. https://doi.org/10.3390/molecules28093921
Kapoor D., Singh S., Kumar V., Romero R., Prasad R., Singh J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 2019, vol. 19, 100182. https://doi.org/10.1016/j.plgene.2019.100182
Kaur M., Nagpal A.K., Evaluation of air pollution tolerance index and anticipated performance index of plants and their application in development of green space along the urban areas. Environmental Science and Pollution Research, 2017, vol. 24(23), pp. 18881-18895. https://doi.org/10.1007/s11356-017-9500-9
Kwak M. J., Lee J.K., Park S., Lim Y.J., Kim H., Nam Kim K.N., Je S.M., Park C.R. and Woo S.Y. Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake. Sustainability, 2020, vol. 12, 3067. https://doi.org/10.3390/su12073067
Maksimović Т., Hasanagić D., Samelak I., Kukavica B. Class III peroxidase and polyphenol oxidase activities in aquatic macrophytes during vegetative period in Bardača a wetland. International Journal of Limnology, 2022, vol. 58. https://doi.org/10.1051/limn/2022009
Manquián-Cerda K., Cruces E., Escudey M., Zúñiga G., Calderón R. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicol. Environ. Saf., 2018, vol. 150, pp. 320-326. https://doi.org/10.1016/j.ecoenv.2017.12.050
Molnár V.E., Tóthmérész B., Szabó S., Simon E. Pollution assessment in urban areas using air pollution tolerance index of tree species. Air Pollution XXVI. WIT Transactions on Ecology and the Environment, 2018, vol. 230, pp. 367-374. https://doi.org/10.2495/AIR180341
Nowak D.J., Hirabayashi S., Doyle M., McGovern M., Pasher J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban Forestry & Urban Greening, 2018, vol. 29, pp. 40-48. https://doi.org/10.1016/j.ufug.2017.10.019
Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, vol. 9, p. 681. https://doi.org/10.3390/antiox9080681
Han D. Shen H., Duan W., Chen L. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry & Urban Greening, 2019, vol. 48, 126565. https://doi.org/10.1016/j.ufug.2019.126565
Oyareme V., Osaji E.I.O. The Effects and Level of Catalase Enzyme Activity in Different Species of Aquatic Macrophytes and Their Families in Two Different Locations in Niger Delta, (Ikpoba River in Benin-City and Ethiope River in Abraka), Nigeria. Open Access Library Journal, 2021, vol. 8, pp. 1-11. https://doi.org/10.4236/oalib.1107368
Zaghloul A., Saber M., Gadow S., Fikry A. Biological Indicators for Pollution Detection in Terrestrial and Aquatic Ecosystems. Bulletin of the National Research Centre, 2020, vol. 44, article number: 127. https://doi.org/10.1186/s42269-020-00385-x
Zhang P., Liu Y., Chen X., Yang Z., Zhu M. & Li Y. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Ecotoxicology and Environmental Safety, 2016, vol. 132, pp. 212-223.
Просмотров аннотации: 84 Загрузок PDF: 61
Copyright (c) 2024 Olga A. Soboleva, Elena V. Nozdracheva, Lidiya N. Anishchenko
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.