О ВЛИЯНИИ УЛЬТРАДИСПЕРСНЫХ ЧАСТИЦ ОКСИДА КРЕМНИЯ IV (SiO2) И ЭКСТРАКТА КОРЫ ДУБА НА БАКТЕРИАЛЬНУЮ ЛЮМИНЕСЦЕНЦИЮ

  • Daniil E. Shoshin ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет https://orcid.org/0000-0002-5125-5981
  • Elena A. Sizova ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет https://orcid.org/0000-0003-3086-681X
  • Aina M. Kamirova ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук https://orcid.org/0000-0003-1474-8223
Ключевые слова: ультрадисперсные частицы, бактериальные клетки, биолюминесценция, оксид кремния, кора дуба

Аннотация

Состояние вопроса. Фитобиотические добавки и ультрадисперсные частицы (УДЧ), в особенности металлической природы, находят все большее применение в сельском хозяйстве как удобрения и компоненты кормовых добавок. Однако о действии неметаллических УДЧ данных крайне мало. В частности, кремнийсодержащие УДЧ показали высокую эффективность как стимуляторы роста растений в стрессовых условиях, но могут ли они выступать как антибактериальные средства или в качестве протекторных агентов в микробиальных экосистемах неизвестно.

Цель работы – оценка позитивно-негативных реакций модельного люминесцирующего микроорганизма Escherichia coli K12 TG1 при воздействии на него суспензий УДЧ оксида кремния IV (SiO2) в различных концентрациях как в чистом виде, так и в сочетании с фитобиотической добавкой – экстрактом коры дуба.

Материалы и методы. В статье изучена интенсивность свечения рекомбинантного штамма Echerichia coli природного морского микроорганизма Photobacterium leiongnathi с клонированными luxCDABE-гены при воздействии концентраций (0,5-0,00024 M) ультрадисперсных частиц SiO2 и разведений водного экстракта коры дуба (2-1024 кратное).

Результаты. Установлено, что УДЧ в чистом виде стимулируют бактериальную люминесценцию на 252,2 % в отношении контроля в стационарной фазе роста при 0,5 моль/л. Они же выступают как протекторы внутриклеточного метаболизма, снижая ингибирующее действие экстракта коры дуба. Последний в чистом виде подавляет более 50 % свечения бактерий вплоть до 4-кратного разведения (12,5 мг/мл), что определяет возможность его использования в качестве альтернативы антибиотическим препаратам.

Заключение. УДЧ SiO2 обладают выраженными защитными свойствами в отношении микробиального сообщества.

Информация о спонсорстве.  Исследование выполнено при финансовой поддержке Гранта президента РФ (Проект № 075-15-2022-682/1).

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Daniil E. Shoshin, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет

магистр, лаборант-исследователь центра «Нанотехнологии в сельском хозяйстве»

Elena A. Sizova, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет

доктор биологических наук, руководитель центра «Нанотехнологии в сельском хозяйстве», профессор кафедры биологии и почвоведения

Aina M. Kamirova, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук

кандидат биологических наук, научный сотрудник центра «Нанотехнологии в сельском хозяйстве»

Литература

Список литературы

Алешина Е. С. Методы биолюминесцентного тестирования: Методические указания к лабораторному практикуму / Е. С. Алешина, И. Ф. Каримов, Д. Г. Дерябин. Оренбург: Оренбургский государственный университет; ЭБС АСВ, 2011. 56 с.

Аринжанов А. Е., Мирошникова Е. П., Килякова Ю. В. Перспективы использования наночастиц в животноводстве (обзор) // Вестник мясного скотоводства. 2014. № 2(85). С. 7-12.

Гречихин И. В. Микроорганизмы как индикатор биологической стабильности экосистем // К вершинам науки: сборник статей по результатам Всероссийского конкурса, Елец, 23 ноября 2020 года. Елец: Елецкий государственный университет им. И.А. Бунина, 2020. С. 5-8.

Карманова А. А. Геохимическая характеристика элемента кремния // Международный журнал прикладных наук и технологий Integral. 2021. № 1.

Косумов Р. С., Оказова З. П. Микроорганизмы как индикаторы качества почв // Вестник Биомедицина и социология. 2021. Т. 6. № 2. С. 45-50. https://doi.org/10.26787/nydha-2618-8783-2021-6-2-45-50

Мансурова Л. А. и др. Физиологическая роль кремния // Сибирский медицинский журнал (Иркутск). 2009. Т. 90. № 7. С. 16-18.

Мустафина А. С. Влияние наноразмерного оксида кремния на концентрацию тяжелых металлов в организме сельскохозяйственной птицы // Перспективные аграрные и пищевые инновации: Материалы Международной научно-практической конференции, Волго-град, 06–07 июня 2019 года / Под общей редакцией И.Ф. Горлова. Волгоград: СФЕРА, 2019. С. 180-183.

Мустафина А. С. Влияние ультрадисперсного диоксид кремния на аминокислот-ный состав мяса и печени цыплят-бройлеров // Животноводство и кормопроизводство. 2020. Т. 103. № 3. С. 8-15. https://doi.org/10.33284/2658-3135-103-3-8

Мустафина А. С., Никулин В. Н., Мустафин Р. З. Изменение продуктивных качеств бройлеров под действием ультрадисперсного кремния // Актуальные вопросы управления производством растениеводческой и животноводческой продукции АПК и здоровьем сельскохозяйственных животных : материалы всероссийской (национальной) научно-практической конференции, пос. Персиановский, 20 декабря 2019 года. Персиановский: Донской государственный аграрный университет, 2019. С. 270-278.

Петросян А. Д. и др. Влияния наночастиц металлов (НЧМ) разных размеров на рост и развитие семян гороха // Экология и природопользование: тенденции, модели, прогнозы, прикладные аспекты: Материалы Национальной научно-практической конференции, Рязань, 27 марта 2020 года. Рязань: Рязанский государственный агротехнологический университет им. П.А. Костычева, 2020. С. 108-111.

Рахманин Ю. А. и др. Кремний, его биологическое действие при энтеральном поступлении в организм и гигиеническое нормирование в питьевой воде. Обзор литературы // Гигиена и санитария. 2017. Т. 96. № 5. С. 492-498. https://doi.org/10.18821/0016-9900-2017-96-5-492-498

Рогозинникова И. В. Органический источник меди в кормлении цыплят-бройлеров – альтернатива неорганической соли // Инновационные направления и разработки для эффективного сельскохозяйственного производства: материалы международной научно-практической конференции, посвящённой памяти члена-корреспондента РАН В.И. Левахина: в 2-х частях, Оренбург, 27–28 октября 2016 года. Оренбург: Всероссийский научно-исследовательский институт мясного скотоводства, 2016. С. 171-174.

Родичева Э. К., Кузнецов А. М., Медведева С. Е. Биолюминесцентные биотесты на основе светящихся бактерий для экологического мониторинга // Вестник Оренбургского государственного университета. 2004. № 5. С. 96-100.

Рязанов В. А. Фитобиотики как альтернатива антибиотикам в животноводстве // Животноводство и кормопроизводство. 2021. Т. 104. № 4. С. 108-123. https://doi.org/10.33284/2658-3135-104-4-108

Самолюк В. В., Кацев А. М Биосенсоры на основе природных люминесцентных бактерий для анализа экотоксичности лекарственных веществ // Молодежный инновационный вестник. 2021. Т. 10. № S1. С. 227-229.

Свиридова Д. А. Изучение механизма генотоксичности диоксидина с помощью lux-биосенсоров Esсherichia coli // Радиационная биология. Радиоэкология. 2020. Т. 60. № 6. С. 595-603. https://doi.org/10.31857/S0869803120060223

Сизова Е. А., Макаева А. М. Влияние высокодисперсных препаратов на обмен веществ и продуктивность молодняка крупного рогатого скота // Кормление сельскохозяйственных животных и кормопроизводство. 2020. № 12(185). С. 22-33. https://doi.org/10.33920/sel-05-2012-03

Шелкова А. О., Новикова Н. Е. Физиологическая роль кремния в жизни растений // Russian Agricultural Science Review. 2015. Т. 5. № 5-1. С. 187-190.

Abdulhussein J. M. et al. The phytobiotic potential of hydro-alcoholic extract of Allium porrum against Bacillus cereus: A computational sight into PlcR protein as a putative target // Bio-catalysis and Agricultural Biotechnology. 2021. Vol. 35, 102062. https://doi.org/10.1016/j.bcab.2021.102062

Ahammed G. J., Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants // Plant Physiology and Biochemistry. 2021. Vol. 165. P. 200-206. https://doi.org/10.1016/j.plaphy.2021.05.031

Ahire M. L. et al. Multifaceted roles of silicon in mitigating environmental stresses in plants // Plant Physiology and Biochemistry. 2021. Vol. 169. P. 291-310. https://doi.org/10.1016/j.plaphy.2021.11.010

Ahmad B. et al. Evaluation of in-vitro and in-vivo antimicrobial potential of Typha ele-phantina leaves extracts using Cyprinus carpio as a research model // Pak. J. Pharm. Sci. 2022. Vol. 35. № 1. P. 323-333. https://doi.org/10.36721/PJPS.2022.35.1.SUP.323-333.1

Akhtar N. et al. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nanoparticles for amelioration of drought stress in wheat // Plant Physiology and Biochem-istry. 2021. Vol. 166. P. 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039

Al Hawani I. A. A., Aldhaher A. H. S., Abdalzahra I. M. A biological study on Quercus bark as antimicrobial agent // Annals of Tropical Medicine and Public Health. 2020. Vol. 23. https://faculty.uobasrah.edu.iq/uploads/publications/1632339350.pdf

Aljumaah M. R. et al. Effects of phytobiotic feed additives on growth traits, blood bio-chemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium // Poultry Science. 2020. Vol. 99. № 11. P. 5744-5751. https://doi.org/10.1016/j.psj.2020.07.033

Alsaeedi A. et al. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake // Plant Physiology and Biochemis-try. 2019. Vol. 139. P. 1-10. https://doi.org/10.1016/j.plaphy.2019.03.008

Altaf M. M. et al. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice // Journal of Hazardous Materials. 2022. Vol. 436. P. 129145. https://doi.org/10.1016/j.jhazmat.2022.129145

Andrade G. Role of functional groups of microorganisms on the rhizosphere microcosm dynamics // Plant surface microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. P. 51-69. https://doi.org/10.1007/978-3-540-74051-3_4

Apata D. F. et al. Antibiotic resistance in poultry // International Journal of Poultry Sci-ence. 2009. Vol. 8. № 4. P. 404-408. https://doi.org/10.3923/ijps.2009.404.408

Ashmead H. D. W. et al. Foliar feeding of plants with amino acid chelates. Noyes pub-lications, 1986.

Atlanderova K. N. et al. Stimulation of ruminal digestion of young cattle with oak bark extract (Quercus cortex) // IOP Conference Series: Earth and Environmental Science. IOP Publish-ing, 2019. Vol. 341. № 1, 012059. https://doi.org/10.1088/1755-1315/341/1/012059

Avis T. J. et al. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity //Soil biology and biochemistry. 2008. Vol. 40. № 7. P. 1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013

Bapat G., Zinjarde S., Tamhane V. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera // Colloids and Surfaces B: Biointerfaces. 2020. Vol. 193, 111079. https://doi.org/10.1016/j.colsurfb.2020.111079

Bayda S. et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine // Molecules. 2019. Vol. 25. № 1, 112. https://doi.org/10.3390/molecules25010112

Bobrenko I. et al. Efficiency of foliar feeding with zinc and copper chelates of spring soft wheat in the conditions of the southern forest-steppe of the Omsk Irtysh region // International Scientific Conference The Fifth Technological Order: Prospects for the Development and Moderni-zation of the Russian Agro-Industrial Sector (TFTS 2019). Atlantis Press, 2020. P. 227-230. https://doi.org/10.2991/assehr.k.200113.175

Borges A. et al. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria // Microbial drug resistance. 2013. Vol. 19. № 4. P. 256-265. https://doi.org/10.1089/mdr.2012.0244

Chen M. et al. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present // Chemosphere. 2018. Vol. 206. P. 255-264. https://doi.org/10.1016/j.chemosphere.2018.05.020

Cheng G. et al. Antibiotic alternatives: the substitution of antibiotics in animal husband-ry? // Frontiers in microbiology. 2014. Vol. 5. P. 217. https://doi.org/10.3389/fmicb.2014.00217

Chodkowska K. A. et al. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens // Animals. 2022. Vol. 12. № 19, 2625. https://doi.org/10.3390/ani12192625

Coskun D. et al. The controversies of silicon's role in plant biology // New Phytologist. 2019. Vol. 221. № 1. P. 67-85. https://doi.org/10.1111/nph.15343

Cristea V. et al. The use of phytobiotics in aquaculture // Lucrări Ştiinţifice-Seria Zootehnie. 2012. Vol. 57. P. 250-255.

Debnath N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) // Journal of Pest Science. 2011. Vol. 84. P. 99-105. https://doi.org/10.1007/s10340-010-0332-3

Dedrie M. et al. Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study // Industrial Crops and Products. 2015. Vol. 70. P. 316-321. https://doi.org/10.1016/j.indcrop.2015.03.071

Devi K. P. et al. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane // Journal of ethnopharmacology. 2010. Vol. 130. № 1. P. 107-115. https://doi.org/10.1016/j.jep.2010.04.025

Dhakate P. et al. Silicon nanoforms in crop improvement and stress management // Chemosphere. 2022. Vol. 305, 135165. https://doi.org/10.1016/j.chemosphere.2022.135165

Dhama K. et al. Evidence based antibacterial potentials of medicinal plants and herbs countering bacterial pathogens especially in the era of emerging drug resistance: An integrated up-date // Int J pharmacol. 2014. Vol. 10. № 1. З. 1-43. https://doi.org/10/3923/ijp.2014.1.43

Dhiman P. et al. Fascinating role of silicon to combat salinity stress in plants: An updat-ed overview // Plant Physiology and Biochemistry. 2021. Vol. 162. P. 110-123. https://doi.org/10.1016/j.plaphy.2021.02.023

Diaz Carrasco J. M., Casanova N. A., Fernández Miyakawa M. E. Microbiota, gut health and chicken productivity: what is the connection? // Microorganisms. 2019. Vol. 7. № 10. P. 374. https://doi.org/10.3390/microorganisms7100374

El-Ghany A. et al. Phytobiotics in poultry industry as growth promoters, antimicrobials and immunomodulators – A review // Journal of World's Poultry Research. 2020. Vol. 10. № 4. P. 571-579. https://dx.doi.org/10.36380/jwpr.2020.65

El-Saadony M. T. et al. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil // Journal of Environmental Sciences. 2021. Vol. 106. P. 1-14. https://doi.org/10.1016/j.jes.2021.01.012

Emamverdian A. et al. The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress // Polish Journal of Environmental Studies. 2021. Vol. 30. № 4. https://doi.org/10.15244/pjoes/129683

Fatemi H., Pour B. E., Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress // Environmental Pollution. 2020. Vol. 266. № 114982. https://doi.org/10.1016/j.envpol.2020.114982

Fisinin V. I. et al. Mixtures of biologically active substances of oak bark extracts change immunological and productive indicators of broilers // Agricultural biology. 2018. Vol. 53. № 2. P. 385-92. https://doi.org/10.15389/agrobiology.2018.2.385eng

Foksowicz-Flaczyk J. et al. The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count // Animals. 2022. Vol. 12. № 3. P. 255. https://doi.org/10.3390/ani12030255

Frew A. et al. The role of silicon in plant biology: a paradigm shift in research approach // Annals of botany. 2018. Vol. 121. № 7. P. 1265-1273. https://doi.org/10.1093/aob/mcy009

Gaur S. et al. Silicon and nitric oxide interplay alleviates copper induced toxicity in mung bean seedlings // Plant Physiology and Biochemistry. 2021. Vol. 167. P. 713-722. https://doi.org/10.1016/j.plaphy.2021.08.011

Gill A. O., Holley R. A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics // International journal of food microbiology. 2006. Vol. 111. № 2. P. 170-174. https://doi.org/10.1016/j.ijfoodmicro.2006.04.046

Guerriero G., Hausman J. F., Legay S. Silicon and the plant extracellular matrix // Fron-tiers in plant science. 2016. Vol. 7. P. 463. https://doi.org/10.3389/fpls.2016.00463

Hassirian N., Karimi E., Oskoueian E. Nanoliposome-encapsulated phenolic-rich frac-tion from Alcea rosea as a dietary phytobiotic in mice challenged by Escherichia coli //Annals of Microbiology. 2022. Vol. 72. № 1. P. 1-11. https://doi.org/10.1186/s13213-022-01665-9

Heinken A. et al. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut // Gut microbes. 2013. Vol. 4. № 1. P. 28-40. https://doi.org/10.4161/gmic.22370

Hughes E., Pierson R. The animalcules of Antoni van Leeuwenhoek // Journal of Ob-stetrics and Gynaecology Canada. 2013. Vol. 35. № 10. P. 960. https://doi.org/10.1016/S1701-2163(15)30820-3

62 Hyldgaard M., Mygind T., Meyer R. L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components // Frontiers in microbiology. 2012. Vol. 3. P. 12. https://doi.org/10.3389/fmicb.2012.00012

Islam W. et al. Silicon-mediated plant defense against pathogens and insect pests // Pes-ticide Biochemistry and Physiology. 2020. Vol. 168. P. 104641. https://doi.org/10.1016/j.pestbp.2020.104641

Ismail A. et al. Prevalence of some Enteric Bacterial Infections Causing Rabbit Enteritis and Attempts to Control Rabbit Coli Enteritis with Phytobiotics // Zagazig Veterinary Journal. 2017. Vol. 45. № Supplementary 1. P. 91-101. https://doi.org/10.21608/zvjz.2017.29244

Jukna V. et al. The effect of probiotics and phytobiotics on meat properties and quality in pigs // Veterinarija ir zootechnika. 2005. Vol. 29. № 51. https://vetzoo.lsmuni.lt/data/vols/2005/29/pdf/jukna2.pdf

Kalleshwaraswamy C. M., Kannan M., Prakash N. B. Silicon as a natural plant guard against insect pests //Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, 2022. P. 219-227. https://doi.org/10.1016/B978-0-323-91225-9.00004-2

Kaya C., Ashraf M. Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle // Environmental Pollution. 2022. Vol. 294. P. 118608. https://doi.org/10.1016/j.envpol.2021.118608

Khan I. et al. Effects of silicon on heavy metal uptake at the soil-plant interphase: A re-view // Ecotoxicology and environmental safety. 2021. Vol. 222. P. 112510. https://doi.org/10.1016/j.ecoenv.2021.112510

Khan Z. S. et al. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels // Environmental Science and Pollu-tion Research. 2020. Vol. 27. № 5. P. 4958-4968. https://doi.org/10.1007/s11356-019-06673-y

Kiczorowska B. et al. The natural feed additives as immunostimulants in monogastric animal nutrition – a review // Annals of animal science. 2017. Vol. 17. № 3. P. 605-625. https://doi.org/10.1515/aoas-2016-0076

Kim J. H. et al. A vanillin derivative causes mitochondrial dysfunction and triggers oxi-dative stress in Cryptococcus neoformans // PloS one. 2014. Vol. 9. № 2. P. e89122. https://doi.org/10.1371/journal.pone.0089122

Krivonogova A. et al. Inhibitory effect of plant metabolites of Nigella sativa on condi-tionally pathogenic microflora of productive animals // E3S Web of Conferences. EDP Sciences, 2021. Vol. 282. P. 04014. https://doi.org/10.1051/e3sconf/202128204014

Krivonogova A. et al. The influence of phytobiotic based on essential oils of Salvia sclarea, Mentha canadensis, Mentha piperita and Coriandrum sativum on pathogenic microorgan-isms of lactating cow udder // E3S Web of Conferences. EDP Sciences, 2021. Vol. 282. P. 04013. https://doi.org/10.1051/e3sconf/202128204013

Kropyvka Y., Bomko V. Efficiency of use of premixes on the basis of metal chelates in feeding cows in the first 100 days of lactation // Scientific Messenger of LNU of Veterinary Medi-cine and Biotechnologies. Series: Agricultural Sciences. 2017. Vol. 19. № 79. P. 154-158.

Kuhlmann A. M. The second most abundant element in the earth’s crust // Jom. 1963. Vol. 15. № 7. P. 502-505. https://doi.org/10.1007/BF03378936

Kumar N. et al. Phytobiotics and Reproductive Performance of Livestock // Phytobiot-ics & Animal Production. International books and periodicals supply services. 2019. Vol. 97. P. 108.

Kumar S., Soukup M., Elbaum R. Silicification in grasses: variation between different cell types // Frontiers in Plant Science. 2017. Vol. 8. P. 438. https://doi.org/10.3389/fpls.2017.00438

Kvan O. et al. Changes in the content of chemical elements in the muscle tissue of broilers on the background of plant extract and tetracyclines // International Journal of Environmen-tal Science and Development. 2019. Vol. 10. № 12. P. 419-423. https://pdfs.semanticscholar.org/7f78/c519a0e5fe5b15c31187cdf12a5be66e65c7.pdf

Low C. X. et al. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review // Antibiotics. 2021. Vol. 10. № 5. P. 578. https://doi.org/10.3390/antibiotics10050578

Ma J. F. Plant root responses to three abundant soil minerals: silicon, aluminum and iron // Critical Reviews in Plant Sciences. 2005. Vol. 24. № 4. P. 267-281. https://doi.org/10.1080/07352680500196017

Majewska M. P. et al. Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep // Animals. 2022. Vol. 12. № 6. P. 699. https://doi.org/10.3390/ani12060699

Mantovani C. et al. Silicon toxicity induced by different concentrations and sources added to in vitro culture of epiphytic orchids // Scientia Horticulturae. 2020. Vol. 265. P. 109272. https://doi.org/10.1016/j.scienta.2020.109272

Marchese A. et al. Antimicrobial activity of eugenol and essential oils containing euge-nol: A mechanistic viewpoint // Critical reviews in microbiology. 2017. Vol. 43. № 6. P. 668-689. https://doi.org/10.1080/1040841X.2017.1295225

Mion B. et al. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows // Journal of Dairy Science. 2022. Vol. 105. № 8. P. 6693-6709. https://doi.org/10.3168/jds.2022-21908

Miroshnikov S. et al. Comparative Toxicity of CuZn Nanoparticles with Different Phys-ical and Chemical Characteristics // Oriental journal of Chemistry. 2019. Vol. 35. № 3. P. 973. http://dx.doi.org/10.13005/ojc/350308

Mohammadi Gheisar M., Kim I. H. Phytobiotics in poultry and swine nutrition – a re-view // Italian journal of animal science. 2018. Vol. 17. № 1. P. 92-99. https://doi.org/10.1080/1828051X.2017.1350120

Mukarram M., Khan M. M. A., Corpas F. J. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield // Journal of Hazardous Materials. 2021. Vol. 412. P. 125254. https://doi.org/10.1016/j.jhazmat.2021.125254

Nassif N. et al. Living bacteria in silica gels // Nature materials. 2002. Vol. 1. № 1. P. 42-44. https://doi.org/10.1038/nmat709

Ngarmsak M. et al. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes // Journal of food protection. 2006. Vol. 69. № 7. P. 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724

Nollet L. et al. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion // Journal of Applied Poultry Research. 2007. Vol. 16. № 4. P. 592-597. https://doi.org/10.3382/japr.2006-00115

Patra A., Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding – A review // Biological Trace Element Research. 2020. Vol. 197. № 1. P. 233-253. https://doi.org/10.1007/s12011-019-01959-1

Qasim M. et al. Potential role of nanoparticles in Plants Protection // Life Sci J. 2022. Vol. 19. № 2. P. 31-38. http://www.lifesciencesite.com/lsj/lsj190222/05_37743lsj190222_31_38.pdf

Rabelo-Ruiz M. et al. Allium extract implements weaned piglet’s productive parameters by modulating distal gut microbiota // Antibiotics. 2021. Vol. 10. № 3. P. 269. https://doi.org/10.3390/antibiotics10030269

Ranjan A. et al. Silicon-mediated abiotic and biotic stress mitigation in plants: Underly-ing mechanisms and potential for stress resilient agriculture // Plant Physiology and Biochemistry. 2021. Vol. 163. P. 15-25. https://doi.org/10.1016/j.plaphy.2021.03.044

Resende R. S. et al. New insights into the hormonal regulation of silicon-supplied sor-ghum plants challenged with Colletotrichum sublineolum // Physiological and Molecular Plant Pa-thology. 2021. Vol. 115. P. 101682. https://doi.org/10.1016/j.pmpp.2021.101682

Romero-Cortes T. et al. Antifungal activity of vanilla juice and vanillin against Alter-naria alternata // CyTA-Journal of Food. 2019. Vol. 17. № 1. P. 375-383. https://doi.org/10.1080/19476337.2019.1586776

Ruesga-Gutiérrez E. et al. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota // Microorganisms. 2022. Vol. 10. № 1. P. 117. https://doi.org/10.3390/microorganisms10010117

Saccá M. L. et al. Ecosystem services provided by soil microorganisms // Soil biological communities and ecosystem resilience. Springer International Publishing, 2017. P. 9-24. https://doi.org/10.1007/978-3-319-63336-7_2

Saja-Garbarz D. et al. Silicon-induced alterations in the expression of aquaporins and antioxidant system activity in well-watered and drought-stressed oilseed rape // Plant Physiology and Biochemistry. 2022. Vol. 174. P. 73-86. https://doi.org/10.1016/j.plaphy.2022.01.033

Salim B. B. M. et al. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition // Annals of Agricul-tural Sciences. 2021. Vol. 66. № 2. P. 176-183. https://doi.org/10.1016/j.aoas.2021.12.003

Sangster A. G., Hodson M. J., Tubb H. J. Silicon deposition in higher plants // Studies in plant science. Elsevier, 2001. Vol. 8. P. 85-113. https://doi.org/10.1016/S0928-3420(01)80009-4

Santra A., Karim S. A. Rumen manipulation to improve animal productivity // Asian-australasian journal of animal sciences. 2003. Vol. 16. № 5. P. 748-763. https://doi.org/10.5713/ajas.2003.748

Sarkar M. M., Mathur P., Roy S. Silicon and nano-silicon: New frontiers of biostimu-lants for plant growth and stress amelioration // Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, 2022. P. 17-36. https://doi.org/10.1016/B978-0-323-91225-9.00010-8

Senthamil Pandian C. et al. Antimicrobial activity of selected phytobiotics individually and in combination against gram positive and gram negative bacteria. 2021. https://www.entomoljournal.com/archives/2021/vol9issue1/PartAF/9-1-378-490.pdf

Shabbaj I. I. et al. Silicon dioxide nanoparticles orchestrate carbon and nitrogen metab-olism in pea seedlings to cope with broomrape infection // Environmental Science: Nano. 2021. Vol. 8. № 7. P. 1960-1977. https://doi.org/10.1039/D0EN01278E

Sharma A. et al. Synergistic action of silicon nanoparticles and indole acetic acid in al-leviation of chromium (CrVI) toxicity in Oryza sativa seedlings // Journal of Biotechnology. 2022. Vol. 343. P. 71-82. https://doi.org/10.1016/j.jbiotec.2021.09.005

Silvana N. et al. Use of vulgar oregano (Origanum vulgare) as phytobiotic in fatting rabbits // Cuban Journal of Agricultural Science. 2011. Vol. 45. № 2. http://cjascience.com/index.php/CJAS/article/view/136

Singh J., Gaikwad D. S. Phytogenic feed additives in animal nutrition // Natural bioac-tive products in sustainable agriculture. Springer, Singapore, 2020. P. 273-289. https://doi.org/10.1007/978-981-15-3024-1_13

Šukele R. et al. Antibacterial effects of oak bark (Quercus robur) and heather herb (Calluna vulgaris L.) extracts against the causative bacteria of bovine mastitis // Veterinary World. 2022. Vol. 15. № 9. P. 2315-2322. https://doi.org/10.14202/vetworld.2022.2315-2322

Suriyaprabha R. et al. Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions // Current Nanoscience. 2012. Vol. 8. № 6. P. 902-908. https://doi.org/10.2174/157341312803989033

Tellez G. et al. Digestive physiology and the role of microorganisms // Journal of Ap-plied Poultry Research. 2006. Vol. 15. № 1. P. 136-144. https://doi.org/10.1093/japr/15.1.136

Tian B., Liu Y., Chen D. Adhesion behavior of silica nanoparticles with bacteria: Spec-troscopy measurements based on kinetics, and molecular docking // Journal of Molecular Liquids. 2021. Vol. 343. P. 117651. https://doi.org/10.1016/j.molliq.2021.117651

Tiwari A. et al. One-pot green synthesis of highly luminescent silicon nanoparticles us-ing Citrus limon (L.) and their applications in luminescent cell imaging and antimicrobial efficacy // Materials Today Communications. 2019. Vol. 19. P. 62-67. https://doi.org/10.1016/j.mtcomm.2018.12.005

Ulanowska M., Olas B. Biological Properties and prospects for the application of euge-nol – A review // International Journal of Molecular Sciences. 2021. Vol. 22. № 7. P. 3671. https://doi.org/10.3390/ijms22073671

Vasilchenko A. S. et al. Oak bark (Quercus sp. cortex) protects plants through the inhi-bition of quorum sensing mediated virulence of Pectobacterium carotovorum // World Journal of Microbiology and Biotechnology. 2022. Vol. 38. № 11. P. 1-12. https://doi.org/10.1007/s11274-022-03366-6

Vieira-Filho L. O., Monteiro F. A. Silicon improves photosynthetic activity and induces antioxidant enzyme activity in Tanzania Guinea grass under copper toxicity // Plant Stress. 2022. Vol. 3. P. 100045. https://doi.org/10.1016/j.stress.2021.100045

Watt M., Kirkegaard J. A., Passioura J. B. Rhizosphere biology and crop productivity – a review // Soil Research. 2006. Vol. 44. № 4. P. 299-317. https://doi.org/10.1071/SR05142

Windisch W., Kroismayr A. The effects of phytobiotics on performance and gut func-tion in monogastrics // World nutrition forum: The future of animal nutrition. 2006. P. 85-90. https://www.efeedlink.com/shared/pdfiles/Biomin-EffectOfPhytobioticsOnPerformance.pdf

Zhao K. et al. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives // Environmental Research. 2022. Vol. 205. P. 112244. https://doi.org/10.1016/j.envres.2021.112244

Ziablitseva M. et al. Study of the effect of EM (effective microorganisms) technology on the productivity of broiler chickens // International Journal of Advanced Science and Technolo-gy. 2020. Vol. 29. № 2. P. 1964-1974.

References

Aleshina E. S. Bioluminescence testing methods: Methodical instructions for laboratory practical / E. S. Alyoshina, I. F. Karimov, D. G. Deryabin. Methods of bioluminescence testing: Methodological instructions for laboratory practical. Orenburg: Orenburg State University; EBS ASV, 2011, 56 p.

Arinzhanov A. E., Miroshnikova E. P., Kilyakova Y. V. Prospects for the use of nano-particles in animal husbandry (review). Bulletin of beef cattle breeding. 2014. № 2(85). P. 7-12.

Grechikhin I. V. Microorganisms as an indicator of biological stability of ecosystems. To the heights of science: a collection of articles based on the results of the All-Russian competition, Elets, November 23, 2020. Elets: Elets State University named after I.A. Bunin. I.A. Bunin, 2020. P. 5-8.

Karmanova A. A. Geochemical characterization of the element silicon. International Journal of Applied Sciences and Technologies Integral. 2021. № 1.

Kosumov R. S., Okazova Z. P. Microorganisms as indicators of soil quality. Vestnik Bi-omedicine and Sociology. 2021. Vol. 6. № 2. P. 45-50. https://doi.org/10.26787/nydha-2618-8783-2021-6-2-45-50

Mansurova L. A. et al. Physiologic role of silicon. Siberian Medical Journal (Irkutsk). 2009. Vol. 90. № 7. P. 16-18.

Mustafina A. P. Effect of nanosized silicon oxide on the concentration of heavy metals in the body of poultry. Perspective agrarian and food innovations: Proceedings of the International Scientific and Practical Conference, Volgograd, June 06-07, 2019 / Under the general editorship of I.F. Gorlov. Volgograd: SFERA, 2019. P. 180-183.

Mustafina A. P. Effect of ultradisperse silica on the amino acid composition of meat and liver of broiler chickens. Animal husbandry and fodder production. 2020. Vol. 103. № 3. P. 8-15. https://doi.org/10.33284/2658-3135-103-3-8

Mustafina A. S., Nikulin V. N., Mustafin R. Z. Changes in productive qualities of broil-ers under the action of ultradisperse silicon. Actual issues of management of crop and livestock pro-duction of AIC and health of farm animals : proceedings of the All-Russian (national) scientific-practical conference, Persianovsky settlement, December 20, 2019. Persianovsky: Don State Agrar-ian University, 2019. P. 270-278.

Petrosyan A. D. et al. Effects of metal nanoparticles (MNP) of different sizes on the growth and development of pea seeds. Ecology and Nature Management: trends, models, forecasts, applied aspects: Proceedings of the National Scientific and Practical Conference, Ryazan, March 27, 2020. Ryazan: Ryazan State Agrotechnological University named after P.A. Kostychev. P.A. Kostychev, 2020. P. 108-111.

Rakhmanin Yu. A. et al. Silicon, its biological effect at enteral intake into the body and hygienic rationing in drinking water. Literature review. Hygiene and sanitation. 2017. Vol. 96. № 5. P. 492-498. https://doi.org/10.18821/0016-9900-2017-96-5-492-498

Rogozinnikova I. V. Organic source of copper in the feeding of broiler chickens - an al-ternative to inorganic salt. Innovative directions and developments for effective agricultural produc-tion: proceedings of the international scientific and practical conference dedicated to the memory of corresponding member of the Russian Academy of Sciences V.I. Levakhin: in 2 parts, Orenburg, October 27-28, 2016. Orenburg: All-Russian Research Institute of Meat Cattle Breeding, 2016. P. 171-174.

Rodicheva E. K., Kuznetsov A. M., Medvedeva S. E. Bioluminescent biotests based on luminous bacteria for environmental monitoring. Vestnik of Orenburg State University. 2004. № 5. P. 96-100.

Ryazanov V. A. Phytobiotics as an alternative to antibiotics in animal husbandry. Ani-mal husbandry and fodder production. 2021. Vol. 104. № 4. P. 108-123. https://doi.org/10.33284/2658-3135-104-4-108

Samolyuk V. V., Katsev A. M Biosensors based on natural luminescent bacteria to ana-lyze the ecotoxicity of drugs. Youth Innovation Bulletin. 2021. Vol. 10. № S1. P. 227-229.

Sviridova D. A. Study of the mechanism of dioxidine genotoxicity using lux-biosensors of Escherichia coli. Radiation Biology. Radioecology. 2020. Vol. 60. № 6. P. 595-603. https://doi.org/10.31857/S0869803120060223

Sizova E. A., Makayeva A. M. Effect of highly dispersed preparations on metabolism and productivity of young cattle. Feeding of farm animals and fodder production. 2020. № 12(185). P. 22-33. https://doi.org/10.33920/sel-05-2012-03

Shelkova A. O., Novikova N. E. Physiological role of silicon in plant life. Russian Ag-ricultural Science Review. 2015. Т. 5. № 5-1. P. 187-190.

Abdulhussein J. M. et al. The phytobiotic potential of hydro-alcoholic extract of Allium porrum against Bacillus cereus: A computational sight into PlcR protein as a putative target. Bio-catalysis and Agricultural Biotechnology. 2021. Vol. 35, 102062. https://doi.org/10.1016/j.bcab.2021.102062

Ahammed G. J., Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiology and Biochemistry. 2021. Vol. 165. P. 200-206. https://doi.org/10.1016/j.plaphy.2021.05.031

Ahire M. L. et al. Multifaceted roles of silicon in mitigating environmental stresses in plants. Plant Physiology and Biochemistry. 2021. Vol. 169. P. 291-310. https://doi.org/10.1016/j.plaphy.2021.11.010

Ahmad B. et al. Evaluation of in-vitro and in-vivo antimicrobial potential of Typha ele-phantina leaves extracts using Cyprinus carpio as a research model. Pak. J. Pharm. Sci. 2022. Vol. 35. № 1. P. 323-333. https://doi.org/10.36721/PJPS.2022.35.1.SUP.323-333.1

Akhtar N. et al. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nanoparticles for amelioration of drought stress in wheat. Plant Physiology and Biochemis-try. 2021. Vol. 166. P. 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039

Al Hawani I. A. A., Aldhaher A. H. S., Abdalzahra I. M. A biological study on Quercus bark as antimicrobial agent. Annals of Tropical Medicine and Public Health. 2020. Vol. 23. https://faculty.uobasrah.edu.iq/uploads/publications/1632339350.pdf

Aljumaah M. R. et al. Effects of phytobiotic feed additives on growth traits, blood bio-chemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poultry Science. 2020. Vol. 99. № 11. P. 5744-5751. https://doi.org/10.1016/j.psj.2020.07.033

Alsaeedi A. et al. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry. 2019. Vol. 139. P. 1-10. https://doi.org/10.1016/j.plaphy.2019.03.008

Altaf M. M. et al. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. Journal of Hazardous Materials. 2022. Vol. 436. P. 129145. https://doi.org/10.1016/j.jhazmat.2022.129145

Andrade G. Role of functional groups of microorganisms on the rhizosphere microcosm dynamics. Plant surface microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. P. 51-69. https://doi.org/10.1007/978-3-540-74051-3_4

Apata D. F. et al. Antibiotic resistance in poultry. International Journal of Poultry Sci-ence. 2009. Vol. 8. № 4. P. 404-408. https://doi.org/10.3923/ijps.2009.404.408

Ashmead H. D. W. et al. Foliar feeding of plants with amino acid chelates. Noyes pub-lications, 1986.

Atlanderova K. N. et al. Stimulation of ruminal digestion of young cattle with oak bark extract (Quercus cortex). IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019. Vol. 341. № 1, 012059. https://doi.org/10.1088/1755-1315/341/1/012059

Avis T. J. et al. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil biology and biochemistry. 2008. Vol. 40. № 7. P. 1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013

Bapat G., Zinjarde S., Tamhane V. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids and Surfaces B: Biointerfaces. 2020. Vol. 193, 111079. https://doi.org/10.1016/j.colsurfb.2020.111079

Bayda S. et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019. Vol. 25. № 1, 112. https://doi.org/10.3390/molecules25010112

Bobrenko I. et al. Efficiency of foliar feeding with zinc and copper chelates of spring soft wheat in the conditions of the southern forest-steppe of the Omsk Irtysh region. International Scientific Conference The Fifth Technological Order: Prospects for the Development and Moderni-zation of the Russian Agro-Industrial Sector (TFTS 2019). Atlantis Press, 2020. P. 227-230. https://doi.org/10.2991/assehr.k.200113.175

Borges A. et al. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial drug resistance. 2013. Vol. 19. № 4. P. 256-265. https://doi.org/10.1089/mdr.2012.0244

Chen M. et al. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere. 2018. Vol. 206. P. 255-264. https://doi.org/10.1016/j.chemosphere.2018.05.020

Cheng G. et al. Antibiotic alternatives: the substitution of antibiotics in animal husband-ry? Frontiers in microbiology. 2014. Vol. 5. P. 217. https://doi.org/10.3389/fmicb.2014.00217

Chodkowska K. A. et al. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals. 2022. Vol. 12. № 19, 2625. https://doi.org/10.3390/ani12192625

Coskun D. et al. The controversies of silicon's role in plant biology. New Phytologist. 2019. Vol. 221. № 1. P. 67-85. https://doi.org/10.1111/nph.15343

Cristea V. et al. The use of phytobiotics in aquaculture. Lucrări Ştiinţifice-Seria Zootehnie. 2012. Vol. 57. P. 250-255.

Debnath N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science. 2011. Vol. 84. P. 99-105. https://doi.org/10.1007/s10340-010-0332-3

Dedrie M. et al. Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study. Industrial Crops and Products. 2015. Vol. 70. P. 316-321. https://doi.org/10.1016/j.indcrop.2015.03.071

Devi K. P. et al. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of ethnopharmacology. 2010. Vol. 130. № 1. P. 107-115. https://doi.org/10.1016/j.jep.2010.04.025

Dhakate P. et al. Silicon nanoforms in crop improvement and stress management. Chemosphere. 2022. Vol. 305, 135165. https://doi.org/10.1016/j.chemosphere.2022.135165

Dhama K. et al. Evidence based antibacterial potentials of medicinal plants and herbs countering bacterial pathogens especially in the era of emerging drug resistance: An integrated up-date. Int J pharmacol. 2014. Vol. 10. № 1. З. 1-43. https://doi.org/10/3923/ijp.2014.1.43

Dhiman P. et al. Fascinating role of silicon to combat salinity stress in plants: An updat-ed overview. Plant Physiology and Biochemistry. 2021. Vol. 162. P. 110-123. https://doi.org/10.1016/j.plaphy.2021.02.023

Diaz Carrasco J. M., Casanova N. A., Fernández Miyakawa M. E. Microbiota, gut health and chicken productivity: what is the connection? Microorganisms. 2019. Vol. 7. № 10. P. 374. https://doi.org/10.3390/microorganisms7100374

El-Ghany A. et al. Phytobiotics in poultry industry as growth promoters, antimicrobials and immunomodulators – A review. Journal of World's Poultry Research. 2020. Vol. 10. № 4. P. 571-579. https://dx.doi.org/10.36380/jwpr.2020.65

El-Saadony M. T. et al. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. Journal of Environmental Sciences. 2021. Vol. 106. P. 1-14. https://doi.org/10.1016/j.jes.2021.01.012

Emamverdian A. et al. The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress. Polish Journal of Environmental Studies. 2021. Vol. 30. № 4. https://doi.org/10.15244/pjoes/129683

Fatemi H., Pour B. E., Rizwan M. Isolation and characterization of lead (Pb) resistant microbes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pol-lution. 2020. Vol. 266. № 114982. https://doi.org/10.1016/j.envpol.2020.114982

Fisinin V. I. et al. Mixtures of biologically active substances of oak bark extracts change immunological and productive indicators of broilers. Agricultural biology. 2018. Vol. 53. № 2. P. 385-92. https://doi.org/10.15389/agrobiology.2018.2.385eng

Foksowicz-Flaczyk J. et al. The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count. Animals. 2022. Vol. 12. № 3. P. 255. https://doi.org/10.3390/ani12030255

Frew A. et al. The role of silicon in plant biology: a paradigm shift in research approach. Annals of botany. 2018. Vol. 121. № 7. P. 1265-1273. https://doi.org/10.1093/aob/mcy009

Gaur S. et al. Silicon and nitric oxide interplay alleviates copper induced toxicity in mung bean seedlings. Plant Physiology and Biochemistry. 2021. Vol. 167. P. 713-722. https://doi.org/10.1016/j.plaphy.2021.08.011

Gill A. O., Holley R. A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. International journal of food microbiology. 2006. Vol. 111. № 2. P. 170-174. https://doi.org/10.1016/j.ijfoodmicro.2006.04.046

Guerriero G., Hausman J. F., Legay S. Silicon and the plant extracellular matrix. Fron-tiers in plant science. 2016. Vol. 7. P. 463. https://doi.org/10.3389/fpls.2016.00463

Hassirian N., Karimi E., Oskoueian E. Nanoliposome-encapsulated phenolic-rich frac-tion from Alcea rosea as a dietary phytobiotic in mice challenged by Escherichia coli. Annals of Microbiology. 2022. Vol. 72. № 1. P. 1-11. https://doi.org/10.1186/s13213-022-01665-9

Heinken A. et al. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut microbes. 2013. Vol. 4. № 1. P. 28-40. https://doi.org/10.4161/gmic.22370

Hughes E., Pierson R. The animalcules of Antoni van Leeuwenhoek. Journal of Obstet-rics and Gynaecology Canada. 2013. Vol. 35. № 10. P. 960. https://doi.org/10.1016/S1701-2163(15)30820-3

62 Hyldgaard M., Mygind T., Meyer R. L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology. 2012. Vol. 3. P. 12. https://doi.org/10.3389/fmicb.2012.00012

Islam W. et al. Silicon-mediated plant defense against pathogens and insect pests. Pesti-cide Biochemistry and Physiology. 2020. Vol. 168. P. 104641. https://doi.org/10.1016/j.pestbp.2020.104641

Ismail A. et al. Prevalence of some Enteric Bacterial Infections Causing Rabbit Enteritis and Attempts to Control Rabbit Coli Enteritis with Phytobiotics. Zagazig Veterinary Journal. 2017. Vol. 45. № Supplementary 1. P. 91-101. https://doi.org/10.21608/zvjz.2017.29244

Jukna V. et al. The effect of probiotics and phytobiotics on meat properties and quality in pigs. Veterinarija ir zootechnika. 2005. Vol. 29. № 51. https://vetzoo.lsmuni.lt/data/vols/2005/29/pdf/jukna2.pdf

Kalleshwaraswamy C. M., Kannan M., Prakash N. B. Silicon as a natural plant guard against insect pests.Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, 2022. P. 219-227. https://doi.org/10.1016/B978-0-323-91225-9.00004-2

Kaya C., Ashraf M. Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle. Environmental Pollution. 2022. Vol. 294. P. 118608. https://doi.org/10.1016/j.envpol.2021.118608

Khan I. et al. Effects of silicon on heavy metal uptake at the soil-plant interphase: A re-view. Ecotoxicology and environmental safety. 2021. Vol. 222. P. 112510. https://doi.org/10.1016/j.ecoenv.2021.112510

Khan Z. S. et al. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environmental Science and Pollu-tion Research. 2020. Vol. 27. № 5. P. 4958-4968. https://doi.org/10.1007/s11356-019-06673-y

Kiczorowska B. et al. The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Annals of animal science. 2017. Vol. 17. № 3. P. 605-625. https://doi.org/10.1515/aoas-2016-0076

Kim J. H. et al. A vanillin derivative causes mitochondrial dysfunction and triggers oxi-dative stress in Cryptococcus neoformans. PloS one. 2014. Vol. 9. № 2. P. e89122. https://doi.org/10.1371/journal.pone.0089122

Krivonogova A. et al. Inhibitory effect of plant metabolites of Nigella sativa on condi-tionally pathogenic microflora of productive animals. E3S Web of Conferences. EDP Sciences, 2021. Vol. 282. P. 04014. https://doi.org/10.1051/e3sconf/202128204014

Krivonogova A. et al. The influence of phytobiotic based on essential oils of Salvia sclarea, Mentha canadensis, Mentha piperita and Coriandrum sativum on pathogenic microorgan-isms of lactating cow udder. E3S Web of Conferences. EDP Sciences, 2021. Vol. 282. P. 04013. https://doi.org/10.1051/e3sconf/202128204013

Kropyvka Y., Bomko V. Efficiency of use of premixes on the basis of metal chelates in feeding cows in the first 100 days of lactation. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences. 2017. Vol. 19. № 79. P. 154-158.

Kuhlmann A. M. The second most abundant element in the earth’s crust. Jom. 1963. Vol. 15. № 7. P. 502-505. https://doi.org/10.1007/BF03378936

Kumar N. et al. Phytobiotics and Reproductive Performance of Livestock. Phytobiotics & Animal Production. International books and periodicals supply services. 2019. Vol. 97. P. 108.

Kumar S., Soukup M., Elbaum R. Silicification in grasses: variation between different cell types. Frontiers in Plant Science. 2017. Vol. 8. P. 438. https://doi.org/10.3389/fpls.2017.00438

Kvan O. et al. Changes in the content of chemical elements in the muscle tissue of broilers on the background of plant extract and tetracyclines. International Journal of Environmental Science and Development. 2019. Vol. 10. № 12. P. 419-423. https://pdfs.semanticscholar.org/7f78/c519a0e5fe5b15c31187cdf12a5be66e65c7.pdf

Low C. X. et al. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review. Antibiotics. 2021. Vol. 10. № 5. P. 578. https://doi.org/10.3390/antibiotics10050578

Ma J. F. Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Critical Reviews in Plant Sciences. 2005. Vol. 24. № 4. P. 267-281. https://doi.org/10.1080/07352680500196017

Majewska M. P. et al. Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep. Animals. 2022. Vol. 12. № 6. P. 699. https://doi.org/10.3390/ani12060699

Mantovani C. et al. Silicon toxicity induced by different concentrations and sources added to in vitro culture of epiphytic orchids. Scientia Horticulturae. 2020. Vol. 265. P. 109272. https://doi.org/10.1016/j.scienta.2020.109272

Marchese A. et al. Antimicrobial activity of eugenol and essential oils containing euge-nol: A mechanistic viewpoint. Critical reviews in microbiology. 2017. Vol. 43. № 6. P. 668-689. https://doi.org/10.1080/1040841X.2017.1295225

Mion B. et al. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. Journal of Dairy Science. 2022. Vol. 105. № 8. P. 6693-6709. https://doi.org/10.3168/jds.2022-21908

Miroshnikov S. et al. Comparative Toxicity of CuZn Nanoparticles with Different Phys-ical and Chemical Characteristics. Oriental journal of Chemistry. 2019. Vol. 35. № 3. P. 973. http://dx.doi.org/10.13005/ojc/350308

Mohammadi Gheisar M., Kim I. H. Phytobiotics in poultry and swine nutrition – a re-view. Italian journal of animal science. 2018. Vol. 17. № 1. P. 92-99. https://doi.org/10.1080/1828051X.2017.1350120

Mukarram M., Khan M. M. A., Corpas F. J. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. Journal of Hazardous Materials. 2021. Vol. 412. P. 125254. https://doi.org/10.1016/j.jhazmat.2021.125254

Nassif N. et al. Living bacteria in silica gels. Nature materials. 2002. Vol. 1. № 1. P. 42-44. https://doi.org/10.1038/nmat709

Ngarmsak M. et al. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. Journal of food protection. 2006. Vol. 69. № 7. P. 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724

Nollet L. et al. The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. Journal of Applied Poultry Research. 2007. Vol. 16. № 4. P. 592-597. https://doi.org/10.3382/japr.2006-00115

Patra A., Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding – A review. Biological Trace Element Research. 2020. Vol. 197. № 1. P. 233-253. https://doi.org/10.1007/s12011-019-01959-1

Qasim M. et al. Potential role of nanoparticles in Plants Protection. Life Sci J. 2022. Vol. 19. № 2. P. 31-38. http://www.lifesciencesite.com/lsj/lsj190222/05_37743lsj190222_31_38.pdf

Rabelo-Ruiz M. et al. Allium extract implements weaned piglet’s productive parameters by modulating distal gut microbiota. Antibiotics. 2021. Vol. 10. № 3. P. 269. https://doi.org/10.3390/antibiotics10030269

Ranjan A. et al. Silicon-mediated abiotic and biotic stress mitigation in plants: Underly-ing mechanisms and potential for stress resilient agriculture. Plant Physiology and Biochemistry. 2021. Vol. 163. P. 15-25. https://doi.org/10.1016/j.plaphy.2021.03.044

Resende R. S. et al. New insights into the hormonal regulation of silicon-supplied sor-ghum plants challenged with Colletotrichum sublineolum. Physiological and Molecular Plant Pa-thology. 2021. Vol. 115. P. 101682. https://doi.org/10.1016/j.pmpp.2021.101682

Romero-Cortes T. et al. Antifungal activity of vanilla juice and vanillin against Alter-naria alternata. CyTA-Journal of Food. 2019. Vol. 17. № 1. P. 375-383. https://doi.org/10.1080/19476337.2019.1586776

Ruesga-Gutiérrez E. et al. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota. Microorganisms. 2022. Vol. 10. № 1. P. 117. https://doi.org/10.3390/microorganisms10010117

Saccá M. L. et al. Ecosystem services provided by soil microorganisms. Soil biological communities and ecosystem resilience. Springer International Publishing, 2017. P. 9-24. https://doi.org/10.1007/978-3-319-63336-7_2

Saja-Garbarz D. et al. Silicon-induced alterations in the expression of aquaporins and antioxidant system activity in well-watered and drought-stressed oilseed rape. Plant Physiology and Biochemistry. 2022. Vol. 174. P. 73-86. https://doi.org/10.1016/j.plaphy.2022.01.033

Salim B. B. M. et al. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Annals of Agricul-tural Sciences. 2021. Vol. 66. № 2. P. 176-183. https://doi.org/10.1016/j.aoas.2021.12.003

Sangster A. G., Hodson M. J., Tubb H. J. Silicon deposition in higher plants. Studies in plant science. Elsevier, 2001. Vol. 8. P. 85-113. https://doi.org/10.1016/S0928-3420(01)80009-4

Santra A., Karim S. A. Rumen manipulation to improve animal productivity. Asian-australasian journal of animal sciences. 2003. Vol. 16. № 5. P. 748-763. https://doi.org/10.5713/ajas.2003.748

Sarkar M. M., Mathur P., Roy S. Silicon and nano-silicon: New frontiers of biostimu-lants for plant growth and stress amelioration. Silicon and Nano-silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press, 2022. P. 17-36. https://doi.org/10.1016/B978-0-323-91225-9.00010-8

Senthamil Pandian C. et al. Antimicrobial activity of selected phytobiotics individually and in combination against gram positive and gram negative bacteria. 2021. https://www.entomoljournal.com/archives/2021/vol9issue1/PartAF/9-1-378-490.pdf

Shabbaj I. I. et al. Silicon dioxide nanoparticles orchestrate carbon and nitrogen metabo-lism in pea seedlings to cope with broomrape infection. Environmental Science: Nano. 2021. Vol. 8. № 7. P. 1960-1977. https://doi.org/10.1039/D0EN01278E

Sharma A. et al. Synergistic action of silicon nanoparticles and indole acetic acid in al-leviation of chromium (CrVI) toxicity in Oryza sativa seedlings. Journal of Biotechnology. 2022. Vol. 343. P. 71-82. https://doi.org/10.1016/j.jbiotec.2021.09.005

Silvana N. et al. Use of vulgar oregano (Origanum vulgare) as phytobiotic in fatting rabbits. Cuban Journal of Agricultural Science. 2011. Vol. 45. № 2. http://cjascience.com/index.php/CJAS/article/view/136

Singh J., Gaikwad D. S. Phytogenic feed additives in animal nutrition. Natural bioactive products in sustainable agriculture. Springer, Singapore, 2020. P. 273-289. https://doi.org/10.1007/978-981-15-3024-1_13

Šukele R. et al. Antibacterial effects of oak bark (Quercus robur) and heather herb (Cal-luna vulgaris L.) extracts against the causative bacteria of bovine mastitis. Veterinary World. 2022. Vol. 15. № 9. P. 2315-2322. https://doi.org/10.14202/vetworld.2022.2315-2322

Suriyaprabha R. et al. Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions. Current Nanoscience. 2012. Vol. 8. № 6. P. 902-908. https://doi.org/10.2174/157341312803989033

Tellez G. et al. Digestive physiology and the role of microorganisms. Journal of Applied Poultry Research. 2006. Vol. 15. № 1. P. 136-144. https://doi.org/10.1093/japr/15.1.136

Tian B., Liu Y., Chen D. Adhesion behavior of silica nanoparticles with bacteria: Spec-troscopy measurements based on kinetics, and molecular docking. Journal of Molecular Liquids. 2021. Vol. 343. P. 117651. https://doi.org/10.1016/j.molliq.2021.117651

Tiwari A. et al. One-pot green synthesis of highly luminescent silicon nanoparticles using Citrus limon (L.) and their applications in luminescent cell imaging and antimicrobial efficacy. Materials Today Communications. 2019. Vol. 19. P. 62-67. https://doi.org/10.1016/j.mtcomm.2018.12.005

Ulanowska M., Olas B. Biological Properties and prospects for the application of euge-nol – A review. International Journal of Molecular Sciences. 2021. Vol. 22. № 7. P. 3671. https://doi.org/10.3390/ijms22073671

Vasilchenko A. S. et al. Oak bark (Quercus sp. cortex) protects plants through the inhi-bition of quorum sensing mediated virulence of Pectobacterium carotovorum. World Journal of Microbiology and Biotechnology. 2022. Vol. 38. № 11. P. 1-12. https://doi.org/10.1007/s11274-022-03366-6

Vieira-Filho L. O., Monteiro F. A. Silicon improves photosynthetic activity and induces antioxidant enzyme activity in Tanzania Guinea grass under copper toxicity. Plant Stress. 2022. Vol. 3. P. 100045. https://doi.org/10.1016/j.stress.2021.100045

Watt M., Kirkegaard J. A., Passioura J. B. Rhizosphere biology and crop productivity – a review. Soil Research. 2006. Vol. 44. № 4. P. 299-317. https://doi.org/10.1071/SR05142

Windisch W., Kroismayr A. The effects of phytobiotics on performance and gut func-tion in monogastrics. World nutrition forum: The future of animal nutrition. 2006. P. 85-90. https://www.efeedlink.com/shared/pdfiles/Biomin-EffectOfPhytobioticsOnPerformance.pdf

Zhao K. et al. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. Environmental Research. 2022. Vol. 205. P. 112244. https://doi.org/10.1016/j.envres.2021.112244

Ziablitseva M. et al. Study of the effect of EM (effective microorganisms) technology on the productivity of broiler chickens. International Journal of Advanced Science and Technology. 2020. Vol. 29. № 2. P. 1964-1974.


Просмотров аннотации: 126
Загрузок PDF: 34
Опубликован
2024-06-30
Как цитировать
Shoshin, D., Sizova, E., & Kamirova, A. (2024). О ВЛИЯНИИ УЛЬТРАДИСПЕРСНЫХ ЧАСТИЦ ОКСИДА КРЕМНИЯ IV (SiO2) И ЭКСТРАКТА КОРЫ ДУБА НА БАКТЕРИАЛЬНУЮ ЛЮМИНЕСЦЕНЦИЮ. Siberian Journal of Life Sciences and Agriculture, 16(3), 317-357. https://doi.org/10.12731/2658-6649-2024-16-3-833
Раздел
Биохимия, генетика и молекулярная биология