ПРОГНОЗИРОВАНИЕ УРОВНЯ МИКРОЭЛЕМЕНТНОГО ПИТАНИЯ ПЛОДА У ГЛУБОКОСТЕЛЬНЫХ КОРОВ
Аннотация
Считают, что внутриутробный запас микроэлементов, необходимых для нормального формирования и развития плода у крупного рогатого скота определяется уровнем питания и тканевыми депо матери. Нарушения микроэлементного питания негативно влияют на здоровье плода и после рождения, ограничивая его рост и предрасполагая к целому ряду соматических заболеваний. Поэтому прогнозирование и своевременная коррекция нарушений микроэлементного питания плода у крупного рогатого скота является актуальной задачей для зооветеринарной науки. В настоящем исследовании авторами впервые была предпринята попытка спрогнозировать уровень накопления селена (Se), меди (Cu), цинка (Zn), железа (Fe), хрома (Cr), стронция (Sr), молибдена (Mo), кобальта (Co), никеля (Ni), мышьяка (As) и марганца (Mn) в организме плода по содержанию этих микроэлементов в волосе матери за 60 дней до предполагаемого отела. Были обследованы 35 клинически здоровых коров симментальской породы с одноплодной беременностью и полученные от них телята (18 самцов и 17 самок). Для ретроспективной оценки микроэлементного статуса плода исследовали образцы волос, полученные у телят вскоре после рождения. Количественное определение микроэлементов (Se, Cu, Zn, Fe, Cr, Sr, Mo, Co, Ni, As и Mn) в образцах волос проводили методом масс-спектрометрии с индуктивно связанной плазмой (Nexion 300D, Perkin Elmer, США). Установлено, что закономерности распределения микроэлементов в системе «мать-плод» у крупного рогатого скота не связаны с полом новорожденного. Зависимости между содержанием в волосе матери и новорожденного для большинства исследованных микроэлементов удалось описать полиномами первого (Sr), второго (Co, Mn) и третьего порядка (Se, Cu, Zn, Fe, As). Для четырех микроэлементов (Se, Cu, Fe и Co) получены графики и аналитические выражения, позволяющие прогнозировать по показателям матери их содержание в организме плода с уровнем статистической значимости Р = 0,05, для других четырех микроэлементов (Zn, Sr, As и Mn) – с уровнем Р от 0,10 до 0,15. Для Mo, Cr и Ni статистически значимые зависимости между содержанием их в волосе матери и новорожденного выявить не удалось. На основании полученных прогнозирующих зависимостей для 8 из 11 исследованных микроэлементов (Se, Cu, Fe, Co, Zn, Sr, As и Mn) определены интервалы содержания в волосе коровы за 60 дней до предполагаемого отела, обеспечивающие оптимальный уровень их накопления в организме плода.
Информация о спонсорстве. Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект № 23-26-00136).
Скачивания
Литература
Список литературы
Детков В.Ю., Скальный А.В. Содержание химических элементов в волосах детей, проживающих в Санкт-Петербурге // Вестник Российской военно-
медицинской академии. 2013. № 4(44). С. 155-158. https://www.vmeda.org/wp-content/uploads/2016/pdf/155-158.pdf (дата обращения: 11.11.2023).
Замана С.П. Определение химического элементного состава волосяного покрова у крупного рогатого скота // Сельскохозяйственная биология. 2006. № 4. С. 121-125.
Новикова И.В. Интенсивные технологии алкогольных и функциональных безалкогольных напитков на основе солодов и экстрактов: сырьевые источники, прогнозирование качества и проектирование рецептур: Дисс. … докт. техн. наук. Воронеж, 2015. Т. 2. 160 с. http://old.vsuet.ru/diser/56_NovikovaIV/dis_pril_NovikovaIV.pdf (дата обращения: 11.11.2023).
Сафонов В.А., Ермилова Т.С., Салимзаде Э.А.О., Черницкий А.Е. Скрининг элементного состава волос у новорожденных телят как способ диагно-стики внутриутробного дисэлементоза // Ветеринария и кормление. 2022. № 5. С. 48-50. https://doi.org/10.30917/ATT-VK-1814-9588-2022-5-14
Черницкий А.Е. Патофизиологическое обоснование методов неинва-зивной диагностики, прогнозирования развития и исхода респираторных заболе-ваний у телят в неонатальный период: Дисс. … докт. биол. наук. Воронеж, 2020. 348 с. http://dx.doi.org/10.13140/RG.2.2.34489.29287
Abdelrahman M.M., Kincaid R.L. Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation // Journal of Dairy Science, 1993, vol. 76, no. 11, pp. 3588-3593. https://doi.org/10.3168/jds.s0022-0302(93)77698-5
Anas M., Diniz W.J.S., Menezes A.C.B., Reynolds L.P., Caton J.S., Dahlen C.R., Ward A.K. Maternal mineral nutrition regulates fetal genomic programming in cattle: a review // Metabolites, 2023, vol. 13, no. 5, 593. doi: https://doi.org/10.3390/metabo13050593
Bickel P.J., Doksum K.A. Mathematical Statistics: Basic Ideas and Selected Topics, Volumes I-II Package (1st ed.). New York: Chapman and Hall/CRC, 2015. 1066 p. https://doi.org/10.1201/9781315369266
Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle // Journal of Mechanics of Continua and Mathematical Sciences, 2020, no. S10, pp. 154-170. https://doi.org/10.26782/jmcms.spl.10/2020.06.00013
Cygan-Szczegielniak D., Stanek M., Giernatowska E., Janicki B. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows // Folia Biologica, 2014, vol. 62, no. 3, pp. 163-169. https://doi.org/10.3409/FB62_3.163
Draper N.R., Smith H. Applied Regression Analysis. 3rd ed. Hoboken: John Wiley & Sons, 1998. 736 p. https://doi.org/10.1002/9781118625590
Gabryszuk M., Słoniewski K., Metera E., Sakowski T. Content of mineral elements in milk and hair of cows from organic farms // Journal of Elementology, 2010, vol. 15, no. 2, pp. 259-267. https://doi.org/10.5601/jelem.2010.15.2.259-267
Goff J.P. Invited review: Mineral absorption mechanisms, mineral interac-tions that affect acid-base and antioxidant status, and diet considerations to improve mineral status // Journal of Dairy Science, 2018, vol. 101, no. 4, pp. 2763-2813. https://doi.org/10.3168/jds.2017-13112
Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy // Biomolecules, 2020, vol. 10, no. 8, 1176. https://doi.org/10.3390/biom10081176
Harvey K.M., Cooke R.F., Colombo E.A., Rett B., de Sousa O.A., Harvey L.M., Russell J.R., Pohler K.G., Brandão A.P. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: physiological and productive response of cows and their offspring until weaning // Journal of Animal Science, 2021, vol. 99, no. 5, skab095. https://doi.org/10.1093/jas/skab095
Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis // Veterinary World, 2020, vol. 13, no. 5, pp. 987-995. https://doi.org/10.14202/vetworld.2020.987-995
Krog C.H., Agerholm J.S., Nielsen S.S. Fetal age assessment for Holstein cattle // PLoS One, 2018, vol. 13, no. 11, e0207682. https://doi.org/10.1371/journal.pone.0207682
Lewicka I., Kocyłowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role – Literature review // Ginekologia Polska, 2017, vol. 88, no. 9, pp. 509-514. https://doi.org/10.5603/gp.a2017.0093
Mao W.H., Albrecht E., Teuscher F., Yang Q., Zhao R.Q., Wegner J. Growth-and breed-related changes of fetal development in cattle // Asian-Australasian Journal of Animal Sciences, 2008, vol. 21, no. 5, pp. 640-647. https://www.animbiosci.org/upload/pdf/21-90.pdf (дата обращения: 11.11.2023).
Marques R.S., Cooke R.F., Rodrigues M.C., Cappellozza B.I., Mills R.R., Larson C.K., Moriel P., Bohnert D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring // Journal of Animal Science, 2016, vol. 94, no. 3, pp. 1215-1226. https://doi.org/10.2527/jas.2015-0036
McCarthy K.L., Menezes A.C., Kassetas C.J., Baumgaertner F., Kirsch J.D., Dorsam S.T., Neville T.L., Ward A.K., Borowicz P.P., Reynolds L.P., Sedivec K.K., Forcherio J.C., Scott R., Caton J.S., Dahlen C.R. Vitamin and mineral supplementation and rate of gain in beef heifers II: effects on concentration of trace minerals in maternal liver and fetal liver, muscle, allantoic, and amniotic fluids at day 83 of gestation // Animals, 2022, vol. 12, no. 15, 1925. https://doi.org/10.3390/ani12151925
McCarthy K.L., Undi M., Becker S., Dahlen C.R. Utilizing an electronic feeder to measure individual mineral intake, feeding behavior, and growth performance of cow-calf pairs grazing native range // Translational Animal Science, 2021, vol. 5, no. 1, txab007. https://doi.org/10.1093/tas/txab007
McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes // Nutrients, 2019, vol. 11, no. 1, 73. https://doi.org/10.3390/nu11010073
Mehdi Y., Dufrasne I. Selenium in cattle: a review // Molecules, 2016, vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545
Miroshnikov S.A., Skalny A.V., Zavyalov O.A., Frolov A.N., Grabeklis A.R. The reference values of hair content of trace elements in dairy cows of Holstein breed // Biological Trace Element Research, 2020, vol. 194, no. 1, pp. 145-151. https://doi.org/10.1007/s12011-019-01768-6
Miroshnikov S.A., Zavyalov O.A., Frolov A.N., Bolodurina I.P., Kalashni-kov V.V., Grabeklis A.R., Tinkov A.A., Skalny A.V. The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus) // Biological Trace Element Research, 2017, vol. 180, no. 1, pp. 56-62. https://doi.org/10.1007/s12011-017-0991-5
Nezhdanov A.G., Mikhalev V.I., Chusova G.G., Papin N.E., Chernitskiy A.E., Lozovaya E.G. Metabolic status of the cows under intrauterine growth retardation of embryo and fetus // Agricultural Biology, 2016, vol. 51, no. 2, pp. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230eng
Ojeda M.L., Nogales F., Romero-Herrera I., Carreras O. Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions // Nutrients, 2021, vol. 13, no. 6, 2085. https://doi.org/10.3390/nu13062085
Safonov V., Salimzade E., Ermilova T., Chernitskiy A. Retrospective diagnosis of intrauterine diselementosis in newborn calves // BIO Web of Conferences, 2022, vol. 52, 00033. https://doi.org/10.1051/bioconf/20225200033
Safonov V.A., Mikhalev V.I., Chernitskiy A.E. Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation // Agricultural Biology, 2018, vol. 53, no. 4, pp. 831-841. https://doi.org/10.15389/agrobiology.2018.4.831eng
Nakamura T., Yamada T., Kataoka K., Sera K., Saunders T., Takatsuji T., Makie T., Nose Y. Statistical resolutions for large variabilities in hair mineral analysis // PLoS One, 2018, vol. 13, no. 12, e0208816. https://doi.org/10.1371/journal.pone.0208816
Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Diselementosis as a risk factor of embryo loss in lactating cows // Turkish Journal of Veterinary and Animal Sciences, 2017, vol. 41, no. 4, pp. 453-459. http://dx.doi.org/10.3906/vet-1609-76
Sullivan T.M., Micke G.C., Greer R.M., Irving-Rodgers H.F., Rodgers R.J., Perry V.E. Dietary manipulation of Bos indicus x heifers during gestation affects the reproductive development of their heifer calves // Reproduction Fertility and Development, 2009, vol. 21, no. 6, pp. 773-784. https://doi.org/10.1071/RD09004
Suttle N.F. Mineral Nutrition of Livestock. 5th ed. Boston: CABI, 2022. 600 p. http://dx.doi.org/10.1079/9781789240924.0000
Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health // Animals, 2020, vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404
References
Detkov V.Yu., Skalny A.V. Soderzhanie khimicheskikh elementov v volosakh detey, prozhivayushchikh v Sankt-Peterburge [The content of chemical elements in the hair of children living in Saint-Petersburg]. Bulletin of the Russian Military Medicinal Academy, 2013, no. 4(44), pp. 155-158. https://www.vmeda.org/wp-content/uploads/2016/pdf/155-158.pdf (accessed November 11, 2023).
Zamana S.P. Opredelenie khimicheskogo elementnogo sostava vo-losyanogo pokrova u krupnogo rogatogo skota [Determination of chemical element composition of the hair cover in cattle]. Sel'skokhozyaistvennaya Biologiya, 2006, no. 4, pp. 121-125.
Novikova I.V. Intensivnye tekhnologii alkogol’nykh i funktsional’nykh bezalkogol’nykh napitkov na osnove solodov i ekstraktov: syr’yevye istochniki, prognozirovanie kachestva i proektirovanie retseptur [Intensive technologies of alcoholic and functional non-alcoholic drinks based on malts and extracts: raw materials, quality forecasting and recipe design]. DSci dissertation. Voronezh, 2015, vol. 2, 160 p. http://old.vsuet.ru/diser/56_NovikovaIV/dis_pril_NovikovaIV.pdf (accessed November 11, 2023).
Safonov V.A., Ermilova T.S., Salimzade E.A.O., Chernitskiy A.E. Skrining elementnogo sostava volos u novorozhdennykh telyat kak sposob diagnostiki vnutriutrobnogo diselementoza [Screening of hair elemental composition in newborn calves as a way for diagnosis of intrauterine diselementosis]. Veterinaria i Kormlenie, 2022, no. 5, pp. 48-50. https://doi.org/10.30917/ATT-VK-1814-9588-2022-5-14
Chernitskiy A.E. Patofiziologicheskoe obosnovanie metodov neinvazivnoy diagnostiki, prognozirovaniya razvitiya i iskhoda respiratornykh zabolevaniy u telyat v neonatalnyy period [Pathophysiological substantiation of methods for non-invasive diagnostics, predicting the development and outcome of respiratory diseases in calves in the neonatal period.]. DSci dissertation. Voronezh, 2020, 348 p. http://dx.doi.org/10.13140/RG.2.2.34489.29287
Abdelrahman M.M., Kincaid R.L. Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation. Journal of Dairy Sci-ence, 1993, vol. 76, no. 11, pp. 3588-3593. https://doi.org/10.3168/jds.s0022-0302(93)77698-5
Anas M., Diniz W.J.S., Menezes A.C.B., Reynolds L.P., Caton J.S., Dahlen C.R., Ward A.K. Maternal mineral nutrition regulates fetal genomic programming in cattle: a review. Metabolites, 2023, vol. 13, no. 5, 593. doi: https://doi.org/10.3390/metabo13050593
Bickel P.J., Doksum K.A. Mathematical Statistics: Basic Ideas and Selected Topics, Volumes I-II Package (1st ed.). New York: Chapman and Hall/CRC, 2015. 1066 p. https://doi.org/10.1201/9781315369266
Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle. Journal of Mechanics of Continua and Mathematical Sciences, 2020, no. S10, pp. 154-170. https://doi.org/10.26782/jmcms.spl.10/2020.06.00013
Cygan-Szczegielniak D., Stanek M., Giernatowska E., Janicki B. Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biologica, 2014, vol. 62, no. 3, pp. 163-169. https://doi.org/10.3409/FB62_3.163
Draper N.R., Smith H. Applied Regression Analysis. 3rd ed. Hoboken: John Wiley & Sons, 1998. 736 p. https://doi.org/10.1002/9781118625590
Gabryszuk M., Słoniewski K., Metera E., Sakowski T. Content of mineral elements in milk and hair of cows from organic farms. Journal of Elementology, 2010, vol. 15, no. 2, pp. 259-267. https://doi.org/10.5601/jelem.2010.15.2.259-267
Goff J.P. Invited review: Mineral absorption mechanisms, mineral interac-tions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 2018, vol. 101, no. 4, pp. 2763-2813. https://doi.org/10.3168/jds.2017-13112
Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 2020, vol. 10, no. 8, 1176. https://doi.org/10.3390/biom10081176
Harvey K.M., Cooke R.F., Colombo E.A., Rett B., de Sousa O.A., Harvey L.M., Russell J.R., Pohler K.G., Brandão A.P. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: physiological and productive response of cows and their offspring until weaning. Journal of Animal Science, 2021, vol. 99, no. 5, skab095. https://doi.org/10.1093/jas/skab095
Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Veterinary World, 2020, vol. 13, no. 5, pp. 987-995. https://doi.org/10.14202/vetworld.2020.987-995
Krog C.H., Agerholm J.S., Nielsen S.S. Fetal age assessment for Holstein cattle. PLoS One, 2018, vol. 13, no. 11, e0207682. https://doi.org/10.1371/journal.pone.0207682
Lewicka I., Kocyłowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role – Literature review. Ginekologia Polska, 2017, vol. 88, no. 9, pp. 509-514. https://doi.org/10.5603/gp.a2017.0093
Mao W.H., Albrecht E., Teuscher F., Yang Q., Zhao R.Q., Wegner J. Growth-and breed-related changes of fetal development in cattle. Asian-Australasian Journal of Animal Sciences, 2008, vol. 21, no. 5, pp. 640-647. https://www.animbiosci.org/upload/pdf/21-90.pdf (accessed November 11, 2023).
Marques R.S., Cooke R.F., Rodrigues M.C., Cappellozza B.I., Mills R.R., Larson C.K., Moriel P., Bohnert D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science, 2016, vol. 94, no. 3, pp. 1215-1226. https://doi.org/10.2527/jas.2015-0036
McCarthy K.L., Menezes A.C., Kassetas C.J., Baumgaertner F., Kirsch J.D., Dorsam S.T., Neville T.L., Ward A.K., Borowicz P.P., Reynolds L.P., Sedivec K.K., Forcherio J.C., Scott R., Caton J.S., Dahlen C.R. Vitamin and mineral supplementation and rate of gain in beef heifers II: effects on concentration of trace minerals in maternal liver and fetal liver, muscle, allantoic, and amniotic fluids at day 83 of gestation. Animals, 2022, vol. 12, no. 15, 1925. https://doi.org/10.3390/ani12151925
McCarthy K.L., Undi M., Becker S., Dahlen C.R. Utilizing an electronic feeder to measure individual mineral intake, feeding behavior, and growth performance of cow-calf pairs grazing native range. Translational Animal Science, 2021, vol. 5, no. 1, txab007. https://doi.org/10.1093/tas/txab007
McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes. Nutrients, 2019, vol. 11, no. 1, 73. https://doi.org/10.3390/nu11010073
Mehdi Y., Dufrasne I. Selenium in cattle: a review. Molecules, 2016, vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545
Miroshnikov S.A., Skalny A.V., Zavyalov O.A., Frolov A.N., Grabeklis A.R. The reference values of hair content of trace elements in dairy cows of Holstein breed. Biological Trace Element Research, 2020, vol. 194, no. 1, pp. 145-151. https://doi.org/10.1007/s12011-019-01768-6
Miroshnikov S.A., Zavyalov O.A., Frolov A.N., Bolodurina I.P., Kalashni-kov V.V., Grabeklis A.R., Tinkov A.A., Skalny A.V. The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus). Biological Trace Element Research, 2017, vol. 180, no. 1, pp. 56-62. https://doi.org/10.1007/s12011-017-0991-5
Nezhdanov A.G., Mikhalev V.I., Chusova G.G., Papin N.E., Chernitskiy A.E., Lozovaya E.G. Metabolic status of the cows under intrauterine growth retardation of embryo and fetus. Agricultural Biology, 2016, vol. 51, no. 2, pp. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230eng
Ojeda M.L., Nogales F., Romero-Herrera I., Carreras O. Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients, 2021, vol. 13, no. 6, 2085. https://doi.org/10.3390/nu13062085
Safonov V., Salimzade E., Ermilova T., Chernitskiy A. Retrospective diagnosis of intrauterine diselementosis in newborn calves. BIO Web of Conferences, 2022, vol. 52, 00033. https://doi.org/10.1051/bioconf/20225200033
Safonov V.A., Mikhalev V.I., Chernitskiy A.E. Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation. Agricultural Biology, 2018, vol. 53, no. 4, pp. 831-841. https://doi.org/10.15389/agrobiology.2018.4.831eng
Nakamura T., Yamada T., Kataoka K., Sera K., Saunders T., Takatsuji T., Makie T., Nose Y. Statistical resolutions for large variabilities in hair mineral analysis. PLoS One, 2018, vol. 13, no. 12, e0208816. https://doi.org/10.1371/journal.pone.0208816
Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Diselementosis as a risk factor of embryo loss in lactating cows. Turkish Journal of Veterinary and Animal Sciences, 2017, vol. 41, no. 4, pp. 453-459. http://dx.doi.org/10.3906/vet-1609-76
Sullivan T.M., Micke G.C., Greer R.M., Irving-Rodgers H.F., Rodgers R.J., Perry V.E. Dietary manipulation of Bos indicus x heifers during gestation affects the reproductive development of their heifer calves. Reproduction Fertility and Development, 2009, vol. 21, no. 6, pp. 773-784. https://doi.org/10.1071/RD09004
Suttle N.F. Mineral Nutrition of Livestock. 5th ed. Boston: CABI, 2022. 600 p. http://dx.doi.org/10.1079/9781789240924.0000
Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 2020, vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404
Просмотров аннотации: 158 Загрузок PDF: 37
Copyright (c) 2024 Vladimir A. Safonov, Tatiana S. Ermilova, Anton E. Chernitskiy, Emil A.O. Salimzade
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.