ОТВЕТ COTINUS COGGYGRIA SCOP. НА СПЕКТРАЛЬНЫЙ СОСТАВ И ИНТЕНСИВНОСТЬ СВЕТОДИОДОВ В КУЛЬТУРЕ IN VITRO

  • Olga O. Zholobova Федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук» (ФНЦ агроэкологии РАН) https://orcid.org/0000-0002-1594-4181
  • Irina V. Mogilevskaya Федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук» (ФНЦ агроэкологии РАН) https://orcid.org/0000-0001-8421-4767
Ключевые слова: С. Coggygria, светодиоды, микроразмножение, спектр излучения, регенеранты

Аннотация

Обоснование. Использование современных светодиодных установок широкого спектра в строго контролируемых условиях при правильном выборе количественного и качественного состава света cпособствует микроклональному размножению вида Сotinus coggygria Scop., используемого в агролесомелиорации, озеленении и фармацевтике.

Цель. Подбор оптимальных параметров фотоморфогенеза для С. сoggygria в условиях in vitro на безгормональной среде как перспективного вида растений, используемого в хозяйственной деятельности.

Материалы и методы. Исследовано действие 15 вариантов освещения, а именно 6 соотношений красного (R), синего (B) и зеленого(G) спектров в составе светодиодов на экспланты С. coggygria in vitro методами, применяемыми в микроклональном размножении. Определение содержания биохимических показателей в образцах исследуемых листьев проведено оптическим методом. Статистическая обработка данных осуществлялась с помощью пакета прикладных программ Statistica 12.0 (StatSoft, USA).

Результаты. Определение показателей регенерантов и листовых пластин, культивируемых in vitro, а также пигментного состава листьев позволило выбрать оптимальное соотношение спектров (1R:1B:0.5G) и значения PPFD (40-70 µmol·m-2 s-1) для получения максимальных результатов при культивировании на безгормональной среде по протоколу Murashige и Scoog. В ходе анализа биохимического состава листьев C. coggygria получены максимальные количества хлорофилла общего (17-21,5 мкг см2) и NBI (67,8-71,0 у.е.) и минимальные количества флавоноидов и антоцианов, что подтверждает нормальную работу фотосинтетического аппарата исследуемых микропобегов.

Заключение. Полученные результаты можно рекомендовать использовать для оптимизации технологии микроразмножения С. coggygria.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Olga O. Zholobova, Федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук» (ФНЦ агроэкологии РАН)

канд. биол. наук, ведущий научный сотрудник - заведующая лабораторией биотехнологий

Irina V. Mogilevskaya, Федеральное государственное бюджетное научное учреждение «Федеральный научный центр агроэкологии, комплексных мелиораций и защитного лесоразведения Российской академии наук» (ФНЦ агроэкологии РАН)

канд. биол. наук, доцент, ведущий научный сотрудник лаборатории биотехнологий

Литература

References

Vliyanie spektral'nogo sostava svetodiodnogo izlucheniya na rost i razvitie rasteniy [Influence of the spectral composition of led radiation on plant growth and development]. Lyakh P.A., Koloshina K.A., Popova K.I., Lyakh, A.A. Innovatsii i prodovol'stvennaya bezopasnost', 2022, no. 1, pp. 108-120. https://doi.org/10.31677/2311-0651-2022-35-1-108-120

Vozdeystvie svetodiodnykh obluchateley razlichnogo spektral'nogo sostava na rost i razvitie Betula pubescens Ehrh. i Rubus idaeus L.v kul'ture in vitro [Effect of different led spectrum regimens on growth and development of Betula pubescens Ehrh. and Rubus idaeus L. in culture in vitro]. Evlakov P.M., Grodetskaya T.A., Fedorova O.A., Shestakov R.A., Baranov O.Yu. Lesotekhnicheskiy zhurnal, 2022, vol. 12, no. 4(48), pp. 14-30. https://doi.org/10.34222/issn2222-7962/2022.4/2.

Ditchenko T.I. Kul'tura rastitel'nykh kletok, tkaney i organov [Culture of plant cells, tissues and organs]. Minsk, Belarus': BGU, 2007, 46 p. http://www.bio.bsu.by/fbr/files/plant_cell_cultures.pdf (accessed March 4, 2024).

Zholobova O.O., Tereshchenko T.V. Optimizatsiya uglevodnogo sostava pitatel'noy sredy pri mikroklonal'nom razmnozhenii Cotinus coggygria Scop. [Optimization of the carbohydrate composition of the nutrient medium for microclonal propagation of Cotinus coggygria Scop.]. Tavricheskiy vestnik agrarnoy nauki, 2023, no. 4(36), pp. 102-112. https://doi.org/10.5281/zenodo.10279273

Opredelenie optimal'nogo spektral'nogo sostava izlucheniya svetodiodnoy fitolampy dlya stimulyatsii razvitiya semyan morkovi i tomata [Optimal Spectral Radiation Composition of a LED Phytolapm for Stimulating Carrot and Tomato Seed Development] / Gubina A.A., Levin E.V., Romanovich M.M., Degterev A.E., Patokov N.O., Lamkin I.A., Tarasov S.A. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika, 2022, vol. 25, no. 3, pp. 62-72. https://doi.org/10.32603/1993-8985-2022-25-3-62-72

Otsenka vliyaniya uglekislotnykh ekstraktov pikhty sibirskoy na indeks azotnogo balansa zernovykh kul'tur [Evaluation of the effect of carbon dioxide extracts of siberian fir on the nitrogen balance index of grain crops] / Kovaleva A.L., Zinner N.S., Nekratova A.N., Shchukina A.V. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 2021, no. 2 (196), pp. 20-26. http://vestnik.asau.ru/index.php/vestnik/article/view/178/170 (accessed March 4, 2024).

Soderzhanie fotosinteticheskikh pigmentov v list'yakh «zdorovykh» i «oslablennykh» derev'ev topolya bal'zamicheskogo (Populus balsamifera L.), proizrastayushchikh v usloviyakh promyshlennogo zagryazneniya (Respublika Bashkortostan, Sterlitamakskiy promyshlennyy tsentr [The content of photosynthetic pigments in the leaves of «healthy» and «weakened» balsam poplar trees (Populus balsamifera L.) growing under conditions of industrial pollution (Republic of Bashkortostan, Sterlitamak industrial center)] / Giniyatullin R.Kh., Ivanov R.S., Tagirova O.V., Kulagin A.Yu. Samarskiy nauchnyy vestnik, 2022, vol. 11, no. 1, pp. 43-48. https://doi.org/10.55355/snv2022111104

Antimicrobial screening of Cotinus coggyggria Scop leaves extract for its application in endodontics / Nizharadze N., Shavadze T., Mamaladze M., Shalashvili K. Experimental and Clinical Medicine Georgia, 2022, vol. 8. https://doi.org/10.52340/jecm.2022.08.01.

Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction / Miler N., Kulus D., Woźny A., Rymarz D., Hajzer M., Wierzbowski K., Szeffs L. In Vitro Cellular & Developmental Biology-Plant, 2019, vol. 55, pp. 99-108. https://doi.org/10.1007/s11627-018-9939-5

Bantis F., Ouzounis T., Radoglou K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 2016, vol. 198, pp. 277–283. https://doi.org/10.1016/j.scienta.2015.11.014

Chemical Composition and Content of Biologically Active Substances Found in Cotinus coggygria, Dactylorhiza maculata, Platanthera chlorantha Growing in Various Territories / Sukhikh S., Asyakina L., Korobenkov M., Skrypnik L., Pungin A., Ivanova S., Babich O. Plants, 2021, vol. 12, pp. 2806, 2021. https://doi.org/10.3390/plants10122806

Cotinus coggygria Scop. Attenuates Acetic Acid-Induced Colitis in Rats by Regulation of Inflammatory Mediators/ Sen A., Ertaş B., Çevik Ö., Yıldırım A., Kayalı D.G., Akakın D., Şener G. Applied Biochemistry and Biotechnology, 2023, vol. 195(11), pp. 7021-7036. https://doi.org/10.1007/s12010-023-04474-1

Davis P.A. Burns C. Photobiology in protected horticulture. Food and Energy Security, 2016, vol. 5(4), pp. 223-238. https://doi.org/10.1002/fes3.97

Degtereva M.M., Roshina N.V., Aleksandrova A.A., Tarasov S.A., Lamkin I.A. et al. The Optoelectronic Semiconductor Device Based of the Leds to Improve Plant Growth. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020, pp. 1123-1125. https://doi.org/10.1109/EIConRus49466.2020.9039256

Dutta Gupta S., Jatothu B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant biotechnology reports, 2013, vol. 7, pp. 211-220. https://doi.org/10.1007/s11816-013-0277-0

Effect and mechanism of total flavonoids extracted from Cotinus coggygria against glioblastoma cancer in vitro and in vivo / Wang, G., Wang, J., Du, L., & Li, F. BioMed Research International, 2015. https://doi.org/10.1155/2015/856349

Effects of light-emitting diodes on tissue culture plantlets and seedlings of Rice (Oryza sativa L.) / Yu L.L., Song C.M., Sun L.J., Li L.L., Xu Z.G., Tang C. Journal of Integrative Agriculture, 2020, vol. 19, pp. 1743–1754. https://doi.org/10.1016/S2095-3119(19)62793-0

Goncagül G., Güceyü C., Günaydin E. Investigation of In-Vitro Antibacterial Activity of Cotinus coggygria Scop. Extracts. Van Veterinary Journal, 2020, vol. 31(3), pp. 127-132. https://doi.org/10.36483/vanvetj.742535

Gospodinova Z., Nikolova M., Antov G. In vitro Antiproliferative Effects of Cotinus coggygria Scop. on human non-melanoma and melanoma skin cancer cells. American Journal of Pharm and Health Research, 2021, vol. 9(7). https://doi.org/10.46624/ajphr.2021.v9.i7.001

Huimin L., Zhigang Х. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, vol. 103, pp. 155–163. https://doi.org/10.1007/s11240-010-9763-z

Iacona C., Muleo R. Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt. Scientia Horticulturae, 2010, vol. 125(4), pp. 630-636. https://doi.org/10.1016/j.scienta.2010.05.018

Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro / Pawłowska B., Żupnik M., Szewczyk-Taranek B., Cioć M. Horticulture, Environment, and Biotechnology, 2019, vol. 59, pp. 115-123. https://doi.org/10.1007/s13580-018-0012-4

In vitro antidiabetic activity of Cotinus coggygria Scop. / Gozcu S., Yuca H., Dursunoglu B., Demirezer L.O., Guvenlap Z. Planta med., 2016, vol. 81(S01), pp. S1-S381. https://doi.org/10.1055/s-0036-1596544

In vitro growth and acclimatization of Cattleya loddigesii Lindley (Orchidaceae) with actived charcoal in two light spectra / Galdiano R.F.Jr., Mantovani C., Pivetta K.F.L., de Macedo Lemos E.G. Ciência Rural., 2012, vol. 42(5), pp. 801-808. https://doi.org/10.1590/S0103-84782012005000019

Influence of light-emitting diodes on the efficiency of valuable woody plants micropropagation / Djangalina E.D, Kapytina A.I, Kaigermazova M.A, Mamirova A.A, Shadenova E.A. International Journal of Biology and Chemistry, 2023, vol. 16(1), pp. 49-57. https://doi.org/10.26577/ijbch.2023.v16.i1.05

Integrating Ethnobotany, Phytochemistry, and Pharmacology of Сotinus coggygria and Toxicodendron vernicufluum / Antal D.S., Ardelean F., Jijie R., Pinzaru I., Soica C., Dehelean C. Ethnopharmacology of Eastern European Countries, 2022, vol. 12, pp. 662852. https://doi.org/10.3389/fphar.2021.662852

Kim H.J., Lin M.Y., Mitchell C.A. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environmental and experimental botany, 2019, vol. 157, pp. 228-240. https://doi.org/10.1016/j.envexpbot.2018.10.019

Kozłowska W., Matkowski A., Zielińska S. Light Intensity and Temperature Effect on Salvia yangii (BT Drew) Metabolic Profile in vitro. Frontiers in Plant Science, 2022, vol. 13, pp. 888509. https://doi.org/10.3389/fpls.2022.888509

Li H., Tang C., Xu Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Scientia Horticulturae, 2013, vol. 150, pp. 117-124. https://doi.org/10.1016/j.scienta.2012.10.009

Light and plant growth regulators on in vitro proliferation / Cavallaro V., Pellegrino A., Muleo R., Forgione I. Plants, 2022, vol. 11(7), pp. 844. https://doi.org/10.3390/plants11070844

Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana / Kwon A.R., Cui H.Y., Lee H., Shin H., Kang, K.S., Park, S.Y. Acta physiologiae plantarum, 2015, vol. 37, pp. 1-9. https://doi.org/10.1007/s11738-015-1812-0

Light quality in plant tissue culture: does it matter? / Batista D.S., Felipe S.H.S., Silva T.D., de Castro K.M., Mamedes-Rodrigues T.C., Miranda, N.A., Otoni, W.C. In Vitro Cellular and Developmental Biology-Plant, 2010, vol. 54, pp. 195-215. https://doi.org/10.1007/s11627-018-9902-5

Light quality on growth and phenolic compounds accumulation in Moringa oleifera L. grown in vitro / da Silva R.R., de Souza R.R., Coimbra M., Nery F., Alvarenga A., Paiva R. Comunicata Scientiae, 2020, vol. 11, pp. e3313-e3133. https://doi.org/10.14295/cs.v11i.3313

Light-emitting diodes: Progress in plant micropropagation / Bello-Bello J.J., Perez-Sato J.A., Cruz-Cruz C.A., Martínez-Estrada E. In: Jacob-lopes E., Zepka L. Q., Queiroz M. I. (ed.). Chlorophyll. BoD–Books on Demand. 2017, vol. 6(1), pp. 93-103. https://dx.doi.org/10.5772/67913

Lotfi M., Mars M., Werbrouck S. Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic Acid. Plant Growth Regulation, 2019, vol. 88, pp. 173–180. https://doi.org/10.1007/s10725-019-00498-y

Park Y., Runkle E. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. Plos One, 2018, vol. 13(8), pp. e0202386. https://doi.org/10.6084/m9.figshare.6946136

Takahashi S., Badger M.R. Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 2011, vol. 16, pp. 1-10. https://doi.org/10.1016/j.tplants.2010.10.001

The effects of photoperiod and light spectrum on stock plant growth and rooting of cuttings of Cotinus coggygria ‘Royal Purple’ / Cameron R.W.F., Harrison-Murray R.S., Judd H.L, Marks T.R, Ford Y.Y, Bates C.H.A. The Journal of Horticultural Science and Biotechnology, 2005, vol. 80(2), pp. 245-253. https://doi.org/10.1080/14620316.2005.11511925

Zheng L., He H., Song W. Application of Light-emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review. Hortscience, 2019, vol. 54(10), pp. 1656–1661. https://doi.org/10.21273/HORTSCI14109-19

Zholobova O.O., Mogilevskaya I.V., Melnik S.V. Screening Smoke Tree (Cotinus coggygria Scop.) on Osmotic Stress using Polyethylene Glycol 6000 in vitro. Indian Journal of Agricultural Research, 2024, vol. 58(1), pp. 36-42. https://doi.org/10.18805/IJARe.AF-781

Список литературы

Влияние спектрального состава светодиодного излучения на рост и развитие растений / Лях П.А., Колошина К.А., Попова К.И., Лях, А.А // Инновации и продовольственная безопасность. 2022. №. 1. С. 108-120. https://doi.org/10.31677/2311-0651-2022-35-1-108-120

Воздействие светодиодных облучателей различного спектрального состава на рост и развитие Betula pubescens Ehrh. и Rubus idaeus L.в культуре in vitro/ Евлаков П.М., Гродецкая Т.А., Федорова О.А., Шестаков Р.А., Баранов О.Ю // Лесотехнический журнал. 2022. Т. 12. №. 4(48). С. 14-30. https://doi.org/10.34222/issn2222-7962/2022.4/2

Дитченко Т.И. Культура растительных клеток, тканей и органов. Минск, Беларусь: БГУ, 2007, 46 с. http://www.bio.bsu.by/fbr/files/plant_cell_cultures.pdf (дата обращения: 04.03.2024).

Жолобова О.О., Терещенко Т.В. Оптимизация углеводного состава питательной среды при микроклональном размножении Cotinus coggygria Scop. // Таврический вестник аграрной науки. 2023. № 4(36). С. 102-112. https://doi.org/ 10.5281/zenodo.10279273

Определение оптимального спектрального состава излучения светодиодной фитолампы для стимуляции развития семян моркови и томата / Губина А.А., Левин Е.В., Романович М.М., Дегтерев А.Э., Патоков Н.О., Ламкин И.А., Тарасов С.А. // Известия высших учебных заведений России. Радиоэлектроника. 2022. Т. 25. №. 3. С. 62-72. https://doi.org/10.32603/1993-8985-2022-25-3-62-72

Оценка влияния углекислотных экстрактов пихты сибирской на индекс азотного баланса зерновых культур / Ковалева А.Л., Зиннер Н.С., Некратова А.Н., Щукина А.В. Вестник Алтайского государственного аграрного университета. 2021. №. 2 (196). С. 20-26. http://vestnik.asau.ru/index.php/vestnik/article/view/178/170 (дата обращения: 04.03.2024).

Содержание фотосинтетических пигментов в листьях «здоровых» и «ослабленных» деревьев тополя бальзамического (Populus balsamifera L.), произрастающих в условиях промышленного загрязнения (Республика Башкортостан, Стерлитамакский промышленный центр / Гиниятуллин Р.Х., Иванов Р.С., Тагирова О.В., Кулагин А.Ю. // Самарский научный вестник. 2022. Т. 11. №. 1. С. 43-48. https://doi.org/10.55355/snv2022111104

Antimicrobial screening of Cotinus coggyggria Scop leaves extract for its application in endodontics / Nizharadze N., Shavadze T., Mamaladze M., Shalashvili K. // Experimental and Clinical Medicine Georgia. 2022. Vol. 8. https://doi.org/10.52340/jecm.2022.08.01

Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction / Miler N., Kulus D., Woźny A., Rymarz D., Hajzer M., Wierzbowski K., Szeffs L. // In Vitro Cellular & Developmental Biology-Plant. 2019. Vol. 55. P. 99-108. https://doi.org/10.1007/s11627-018-9939-5

Bantis F.; Ouzounis T.; Radoglou K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success // Scientia Horticulturae. 2016. Vol. 198. P. 277–283. https://doi.org/10.1016/j.scienta.2015.11.014

Chemical Composition and Content of Biologically Active Substances Found in Cotinus coggygria, Dactylorhiza maculata, Platanthera chlorantha Growing in Various Territories / Sukhikh S., Asyakina L., Korobenkov M., Skrypnik L., Pungin A., Ivanova S., Babich O. // Plants. 2021. Vol. 12. P. 2806. https://doi.org/10.3390/plants10122806

Cotinus coggygria Scop. Attenuates Acetic Acid-Induced Colitis in Rats by Regulation of Inflammatory Mediators/ Sen A., Ertaş B., Çevik Ö., Yıldırım A., Kayalı D.G., Akakın D., Şener G. // Applied Biochemistry and Biotechnology. 2023. Vol. 195(11). P. 7021-7036. https://doi.org/10.1007/s12010-023-04474-1

Davis P.A. Burns C. Photobiology in protected horticulture // Food and Energy Security. 2016. Vol. 5(4). P. 223-238. https://doi.org/10.1002/fes3.97

Degtereva M.M., Roshina N.V., Aleksandrova A.A., Tarasov S.A., Lamkin I.A. et al. The Optoelectronic Semiconductor Device Based of the Leds to Improve Plant Growth. IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 2020, pp. 1123-1125. https://doi.org/10.1109/EIConRus49466.2020.9039256

Dutta Gupta S., Jatothu B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis // Plant biotechnology reports. 2013. Vol. 7. P. 211-220. https://doi.org/10.1007/s11816-013-0277-0

Effect and mechanism of total flavonoids extracted from Cotinus coggygria against glioblastoma cancer in vitro and in vivo / Wang, G., Wang, J., Du, L., & Li, F. // BioMed Research International. 2015. https://doi.org/10.1155/2015/856349

Effects of light-emitting diodes on tissue culture plantlets and seedlings of Rice (Oryza sativa L.) / Yu L.L., Song C.M., Sun L.J., Li L.L., Xu Z.G., Tang C. // Journal of Integrative Agriculture. 2020. Vol. 19. P. 1743–1754. https://doi.org/10.1016/S2095-3119(19)62793-0

Goncagül G., Güceyü C., Günaydin E. Investigation of In-Vitro Antibacterial Activity of Cotinus coggygria Scop. Extracts // Van Veterinary Journal. 2020. Vol. 31(3). P. 127-132. https://doi.org/10.36483/vanvetj.742535

Gospodinova Z., Nikolova M., Antov G. In vitro Antiproliferative Effects of Cotinus coggygria Scop. on human non-melanoma and melanoma skin cancer cells // American Journal of Pharm and Health Research. 2021. vol. 9(7). https://doi.org/10.46624/ajphr.2021.v9.i7.001

Huimin L., Zhigang Х. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro // Plant Cell, Tissue and Organ Culture (PCTOC). 2010. Vol. 103. P. 155–163. https://doi.org/10.1007/s11240-010-9763-z

Iacona C., Muleo R. Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt. // Scientia Horticulturae. 2010. Vol. 125(4). P. 630-636. https://doi.org/10.1016/j.scienta.2010.05.018

Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro / Pawłowska B., Żupnik M., Szewczyk-Taranek B., Cioć M. / Horticulture, Environment, and Biotechnology. 2019. Vol. 59. P. 115-123. https://doi.org/10.1007/s13580-018-0012-4

In vitro antidiabetic activity of Cotinus coggygria Scop. / Gozcu S., Yuca H., Dursunoglu B., Demirezer L.O., Guvenlap Z. // Planta med. 2016. Vol. 81(S01). P. S1-S381. https://doi.org/10.1055/s-0036-1596544

In vitro growth and acclimatization of Cattleya loddigesii Lindley (Orchidaceae) with actived charcoal in two light spectra / Galdiano R.F.Jr., Mantovani C., Pivetta K.F.L., de Macedo Lemos E.G. Ciência Rural. 2012. Vol. 42(5). P. 801-808. https://doi.org/10.1590/S0103-84782012005000019

Influence of light-emitting diodes on the efficiency of valuable woody plants micropropagation / Djangalina E.D, Kapytina A.I, Kaigermazova M.A, Mamirova A.A, Shadenova E.A. // International Journal of Biology and Chemistry. 2023. Vol. 16(1). P. 49-57. https://doi.org/10.26577/ijbch.2023.v16.i1.05

Integrating Ethnobotany, Phytochemistry, and Pharmacology of Сotinus coggygria and Toxicodendron vernicufluum / Antal D.S., Ardelean F., Jijie R., Pinzaru I., Soica C., Dehelean C. // Ethnopharmacology of Eastern European Countries. 2022. Vol. 12. P. 662852. https://doi.org/10.3389/fphar.2021.662852

Kim H.J., Lin M.Y., Mitchell C.A. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes // Environmental and experimental botany. 2019. Vol. 157. P. 228-240. https://doi.org/10.1016/j.envexpbot.2018.10.019

Kozłowska W., Matkowski A., Zielińska S. Light Intensity and Temperature Effect on Salvia yangii (BT Drew) Metabolic Profile in vitro // Frontiers in Plant Science. 2022. Vol. 13. P. 888509. https://doi.org/10.3389/fpls.2022.888509

Li H., Tang C., Xu Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro // Scientia Horticulturae. 2013. Vol. 150. P. 117-124.

Light and plant growth regulators on in vitro proliferation / Cavallaro V., Pellegrino A., Muleo R., Forgione I. // Plants. 2022. Vol. 11(7). P. 844. https://doi.org/10.3390/plants11070844. https://doi.org/10.1016/j.scienta.2012.10.009

Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana / Kwon A.R., Cui H.Y., Lee H., Shin H., Kang, K.S., Park, S.Y. // Acta physiologiae plantarum. 2015. Vol. 37. P. 1-9. https://doi.org/10.1007/s11738-015-1812-0

Light quality in plant tissue culture: does it matter? / Batista D.S., Felipe S.H.S., Silva T.D., de Castro K.M., Mamedes-Rodrigues T.C., Miranda, N.A., Otoni, W.C. // In Vitro Cellular and Developmental Biology-Plant. 2010. Vol. 54. P. 195-215. https://doi.org/10.1007/s11627-018-9902-5

Light quality on growth and phenolic compounds accumulation in Moringa oleifera L. grown in vitro / da Silva R.R., de Souza R.R., Coimbra M., Nery F., Alvarenga A., Paiva R. // Comunicata Scientiae. 2020. Vol. 11. P. e3313-e3133. https://doi.org/10.14295/cs.v11i.3313

Light-emitting diodes: Progress in plant micropropagation/ Bello-Bello J.J., Perez-Sato J.A., Cruz-Cruz C.A., Martínez-Estrada E. In: Jacob-lopes, E.; Zepka, L. Q.; Queiroz, M. I. (ed.). Chlorophyll. BoD–Books on Demand. 2017. Vol. 6(1). P. 93-103. https://dx.doi.org/10.5772/67913

Lotfi M., Mars M., Werbrouck S. Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic Acid // Plant Growth Regulation. 2019. Vol. 88. P. 173–180. https://doi.org/10.1007/s10725-019-00498-y

Park Y., Runkle E. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation // Plos One. 2018. Vol. 13(8). P. e0202386. https://doi.org/10.6084/m9.figshare.6946136

Takahashi S., Badger M.R. Photoprotection in plants: a new light on photosystem II damage // Trends in Plant Science. 2011. Vol. 16. P. 1-10. https://doi.org/10.1016/j.tplants.2010.10.001

The effects of photoperiod and light spectrum on stock plant growth and rooting of cuttings of Cotinus coggygria ‘Royal Purple’ / Cameron R.W.F., Harrison-Murray R.S., Judd H.L, Marks T.R, Ford Y.Y, Bates C.H.A. // The Journal of Horticultural Science and Biotechnology. 2005. Vol. 80(2). P. 245-253. https://doi.org/10.1080/14620316.2005.11511925

Zheng L., He H., Song W. Application of Light-emitting Diodes and the Effect of Light Quality on Horticultural Crops: A Review // Hortscience. 2019. Vol. 54(10). P. 1656–1661. https://doi.org/10.21273/HORTSCI14109-19

Zholobova O.O., Mogilevskaya I.V., Melnik S.V. Screening Smoke Tree (Cotinus coggygria Scop.) on Osmotic Stress using Polyethylene Glycol 6000 in vitro // Indian Journal of Agricultural Research. 2024. Vol. 58(1). P. 36-42. https://doi.org/10.18805/IJARe.AF-781


Просмотров аннотации: 61
Загрузок PDF: 26
Опубликован
2024-10-31
Как цитировать
Zholobova, O., & Mogilevskaya, I. (2024). ОТВЕТ COTINUS COGGYGRIA SCOP. НА СПЕКТРАЛЬНЫЙ СОСТАВ И ИНТЕНСИВНОСТЬ СВЕТОДИОДОВ В КУЛЬТУРЕ IN VITRO. Siberian Journal of Life Sciences and Agriculture, 16(5), 344-366. https://doi.org/10.12731/2658-6649-2024-16-5-985
Раздел
Садоводство и лесоводство