Потенциал использования различных форм дрожжей на примере Saccharomyces cerevisiae в рационах сельскохозяйственных животных (обзор литературы)
Аннотация
Обоснование. Фокус современного животноводства и кормопроизводства направлен на создание благоприятных условий и применение сбалансированного рациона, который включает в себя различные кормовые добавки, положительно влияющие на рост и развитие сельскохозяйственных животных и птицу. В качестве таковых значительное внимание привлекли дрожжи, что обусловлено полезным действием их клеточных компонентов и биологически активных соединений.
Цель. Обзор и анализ научных публикаций по применению различных форм дрожжей, а именно Saccharomyces cerevisiae, в качестве кормовой добавки для сельскохозяйственных животных и птицы.
Материалы и методы. Для достижения поставленной цели был выполнен обзор научной литературы по исследуемой тематике, включая этапы поиска, оценки, отбора данных и их анализ.
Результаты. Дано краткое описание основных биоактивных компонентов дрожжевой клетки, которые считаются ответственными за благоприятное влияние на здоровье животных, оказывая воздействие на продуктивность, иммунный ответ, антиоксидантный статус, состояние рубца и кишечника. Так же большинство положительных эффектов связаны с их способностью модулировать микробиоту желудочно-кишечного тракта животных и птицы, стимулируя рост полезных бактерий и уменьшая колонизацию патогенами.
Заключение. Несмотря на большое количество данных, демонстрирующих положительное действие дрожжей, существуют ряд противоречий, которые не позволяют в полной мере оценить безопасность для организма, и, как следствие, рекомендовать использовать их в официально утвержденных рационах в промышленных масштабах. Данный аспект еще предстоит изучить, чтобы лучше понять и разобраться в эффектах и механизмах действия дрожжей и их компонентов.
Информация о спонсорстве. Работа выполнена по государственному заданию FNWZ-2024-0002.
EDN: GVBWDL
Скачивания
Литература
Овсепьян, В. А., Юрина, Н. А., Тлецерук, И. Р., & Юрин, Д. А. (2023). Применение кормовых добавок в рационах цыплят-бройлеров: монография. Краснодар: Краснодарский научный центр по зоотехнии и ветеринарии. 166 с. https://doi.org/10.48612/monograph-2023-1 (Ovsepian, V. A., Yurina, N. A., Tlezeruk, I. R., & Yurin, D. A. (2023). Application of feed additives in broiler chickens' diets: Monograph. Krasnodar: Krasnodar Scientific Centre for Animal Husbandry and Veterinary Science. 166 p. https://doi.org/10.48612/monograph-2023-1)
Рядчиков, В. Г., Астахова, Д. П., Сень, Т. А., Шляхова, О. Г., Потехин, С. А., & Тарасенко, О. А. (2014). Эффективность сухих пекарских дрожжей рода Saccharomyces cerevisiae в рационах молочных коров. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, (101), 1500–1515. (Ryadchikov, V. G., Astakhova, D. P., Sen’, T. A., Shlyakhova, O. G., Potekhin, S. A., & Tarasenko, O. A. (2014). Efficiency of dry baker's yeast genus Saccharomyces cerevisiae in dairy cows' diet. Polythematic Network Electronic Scientific Journal of Kuban State Agrarian University, (101), 1500–1515.)
Смоленцев, С. Ю. (2023). Влияние пробиотиков на росто-весовые показатели молодняка крупного рогатого скота. Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки», 9(2), 197–204. (Smolentsev, S. Y. (2023). Effect of probiotics on growth-weight parameters of young cattle. Bulletin of Mari State University. Series "Agricultural sciences. Economic sciences", 9(2), 197–204.)
Шацких, Е. В., Нуфер, А. И., & Галиев, Д. М. (2019). Рациональный подход к замене кормовых антибиотиков в рационах цыплят-бройлеров на альтернативные ростостимулирующие добавки СафМаннан и Иммуносан. Вестник Курганской ГСХА, 31(3), 47–49. (Shatskikh, E. V., Nufer, A. I., & Galiev, D. M. (2019). Rational approach to replacing feed antibiotics in broiler chickens' diets with alternative growth stimulators SafMannan and Immunosan. Bulletin of Kurgan State Agricultural Academy, 31(3), 47–49.)
Ahiwe, E. U., Abdallh, M. E., Chang’a, E. P., Omede, A. A., Al-Qahtani, M., Gausi, H., Graham, H., & Iji, P. A. (2020). Influence of dietary supplementation of autolysed whole yeast and yeast cell wall products on broiler chickens. Asian-Australasian Journal of Animal Sciences, 33(4), 579–587. https://doi.org/10.5713/ajas.19.0220
Alizadeh, M., Rodriguez, J. C., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2016). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge. Poultry Science, 95(10), 2266–2273. https://doi.org/10.3382/ps/pew154
Al-Nasrawi, M. A., Al-Kassie, G. A., & Ali, N. A. (2020). Role of yeast (Saccharomyces cerevisiae) as a source of probiotics in poultry diets. European Journal of Molecular & Clinical Medicine, 7(7), 6611–6617. https://www.researchgate.net/publication/348351795_Role_Of_Yeast_Saccharomyces_Cereviciae_As_A_Source_Of_Probiotics_In_Poultry_Diets
Bach, A., Iglesias, C., & Devant, M. (2007). Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology, 136, 156–163. https://doi.org/10.1016/j.anifeedsci.2006.09.011
Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86, 1070–1078. https://doi.org/10.1093/ps/86.6.1070
Bonis, V., Rossell, C., & Gehart, H. (2021). The intestinal epithelium – fluid fate and rigid structure from crypt bottom to villus tip. Frontiers in Cell and Developmental Biology, 20(9), 661931. https://doi.org/10.3389/fcell.2021.661931
Bontempo, V., Di Giancamillo, A., Savoini, G., Dell’Orto, V., & Domeneghini, C. (2006). Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Animal Feed Science and Technology, 129(3), 224–236. https://doi.org/10.1016/j.anifeedsci.2005.12.015
Chacher, M. F. A., Kamran, Z., & Ahsan, U. (2017). Use of mannan oligosaccharide in broiler diets: an overview of underlying mechanism. World's Poultry Science Journal, 73, 831–844. https://doi.org/10.1017/S0043933917000757
Chand, N., Khan, R. U., Mobashar, M., Naz, S., Rowghani, E., & Khan, M. A. (2019). Mannanoligosaccharide (MOS) in broiler ration during the starter phase: 1. Growth performance and intestinal histomorphology. Pakistan Journal of Zoology, 51, 173–176. https://doi.org/10.17582/journal.pjz/2019.51.1.173.176
Chaucheyras-Durand, F., Chevaux, E., Martin, C., & Forano, E. (2012). Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Rigobelo, E. (Ed.), Probiotic in Animals (pp. 119–152). IntechOpen. http://dx.doi.org/10.5772/50192
Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeast on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology, 145, 5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
Chung, Y. H., Walker, N. D., McGinn, S. M., & Beauchemin, K. A. (2011). Differing effects of two active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in non-lactating dairy cows. Journal of Dairy Science, 94, 2431–2439. https://doi.org/10.3168/jds.2010-3277
Cox, C. M., Sumners, L. H., Kim, S., McElroy, A. P., Bedford, M. R., & Dalloul, R. A. (2010). Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poultry Science, 89, 2597–2607. https://doi.org/10.3382/ps.2010-00987
Cui, C., Li, L., Wu, L., Wang, X., Zheng, Y., Wang, F., Wei, H., & Peng, J. (2023). Paneth cells in farm animals: current status and future direction. Journal of Animal Science and Biotechnology, 14(1), 118. https://doi.org/10.1186/s40104-023-00905-5
Dalmo, R. A., & Bøgwald, J. (2008). β-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25, 384–396. https://doi.org/10.1016/j.fsi.2008.04.008
Ding, B., Zheng, J., Wang, X., Zhang, L., Sun, D., Xing, Q., Pirone, A., & Fronte, B. (2019). Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian-Australasian Journal of Animal Sciences, 32(10), 1558–1564. https://doi.org/10.5713/ajas.18.0962
Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Monroy, J. C., & Salem, A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non‐ and pseudo‐ruminant feeding: A review. Journal of Applied Microbiology, 128(3), 658–674. https://doi.org/10.1111/jam.14416
Enculescu, M. (2021). Effects of Saccharomyces cerevisiae addition in dairy cow diets. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78(1), 18–26. https://doi.org/10.15835/buasvmcn-asb:2020.0022
Feldmann, H. (2012). Yeast: Molecular and Cell Biology (2nd ed.). John Wiley & Sons: Hoboken, NJ. ISBN: 978-3-527-65918-0
Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Pratti Daniel, J. L., Iank Bueno, A. V., & Gonçalves Ribeiro, M. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE, 13(11), e0207127. https://doi.org/10.1371/journal.pone.0207127
Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Bolson, D. C., & Pratti Daniel, J. L. (2018). Correction: Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE, 13(4), e0196184. https://doi.org/10.1371/journal.pone.0193313
Ghazanfar, S., Khalid, N., Ahmed, I., & Imran, M. (2017). Probiotic yeast: Mode of action and its effects on ruminant nutrition. In Yeast—Industrial Applications (pp. 179–202). IntechOpen. https://doi.org/10.5772/intechopen.70778
Ghosh, T., Haldar, S., Bedford, M., Muthusami, N., & Samanta, I. (2012). Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: Effects on performance, intestinal histo-morphology and humoral immune responses. Journal of Animal Physiology and Animal Nutrition, 96, 275–284. https://doi.org/10.1111/j.1439-0396.2011.01155.x
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., et al. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75
Göncü, S., Bozkurt, S., & Görgülü, M. (2020). The effect of yeast (Saccharomyces cerevisiae) on fattening performances of growing cattle. MOJ Ecology & Environmental Sciences, 5(3), 109–111. https://doi.org/10.15406/mojes.2020.05.00182
Guo, J., Chang, G., Zhang, K., Xu, L., Jin, D., Bilal, M. S., & Shen, X. (2017). Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget, 8(29), 46769–46780. https://doi.org/10.18632/oncotarget.18151
Gurbuz, E., Balevi, T., Kurtoglu, V., & Oznurlu, Y. (2011). Effects of adding yeast cell walls and Yucca schidigera extract to diets of layer chicks. British Poultry Science, 52(5), 625–631. https://doi.org/10.1080/00071668.2011.619517
Hampson, D. J. (1986). Alterations in piglets' small intestinal structure at weaning. Research in Veterinary Science, 40, 32–40. https://doi.org/10.1016/S0034-5288(18)30482-X
He, T., Mahfuz, S., Piao, X., Wu, D., Wang, W., Yan, H., Ouyang, T., & Liu, Y. (2021). Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. Journal of Applied Animal Research, 49(1), 15–22. https://doi.org/10.1080/09712119.2021.1876705
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
Imrich, I., Copik, S. T., Mlyneková, E., Mlynek, J., Hascik, P., & Kanka, T. (2021). The effect of Saccharomyces cerevisiae additive to cattle ration on milk yield of dairy cows. Acta Fytotechnica Et Zootechnica, 24, 45–48. https://doi.org/10.15414/afz.2021.24.mi-prap.45-48
Jacob, J., & Pescatore, A. (2017). Glucans and the poultry immune system. American Journal of Immunology, 13(3), 45–49. https://doi.org/10.3844/ajisp.2017.45.49
Javadi, A., Mirzaei, H., Safarmashaei, S., & Vahdatpour, S. (2012). Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. African Journal of Biotechnology, 11(57), 12083–12087. https://doi.org/10.5897/AJB12.232
Johnson, C. N., Hashim, M. M., Bailey, C. A., Byrd, J. A., Kogut, M. H., & Arsenault, R. J. (2020). Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poultry Science Journal, 99(6), 2955–2966. https://doi.org/10.1016/j.psj.2020.03.012
Klis, F. M., Mol, P., Hellingwerf, K., & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 26(3), 239–256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
Koc, F., Samli, H., Okur, A., Ozduven, M., Akyurek, H., & Senkoylu, N. (2010). Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulgarian Journal of Agricultural Science, 16, 643–650. https://www.agrojournal.org/16/05-15-10.pdf
Kogan, G., Pajtinka, M., Babincova, M., Miadokova, E., Rauko, P., Slamenova, D., & Korolenko, T. A. (2008). Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma, 55(5), 387–393.
Konca, Y., Kirkpinar, F., & Mert, S. (2009). Effects of mannan-oligosaccharides and live yeast in diets on the carcass, cut yields, meat composition and color of finishing turkeys. Asian-Australasian Journal of Animal Sciences, 22, 550–556. https://doi.org/10.5713/ajas.2009.80350
Kovačević, M. (2015). Morphological and physiological characteristics of the yeast Saccharomyces cerevisiae cells differing in lifespan: Master thesis. Zagreb. 87 p. https://core.ac.uk/download/pdf/53873457.pdf
Krizkova, L., Durackova, Z., Sandula, J., Sasinkova, V., & Krajcovic, J. (2001). Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 497, 213–222. https://doi.org/10.1016/s1383-5718(01)00257-1
Lascano, G. J., & Heinrichs, A. J. (2009). Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science, 124, 48–57. https://doi.org/10.1016/j.livsci.2008.12.007
Lei, C. L., Dong, G. Z., Jin, L., Zhang, S., & Zhou, J. (2013). Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livestock Science, 158, 57–63. https://doi.org/10.1016/j.livsci.2013.08.019
Li, X. H., Chen, Y. P., Cheng, Y. F., Yang, W. L., Wen, C., & Zhou, Y. M. (2016). Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Animal Feed Science and Technology, 212, 81–89. https://doi.org/10.1016/j.anifeedsci.2015.12.011
Lynch, H. A., & Martin, S. A. (2002). Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science, 85(10), 2603–2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
Maamouri, O., Mabrouk, S., & Mathlouthi, L. M. (2019). Effects of Saccharomyces cerevisiae as dead yeast culture on feed supplement in fattening cattle on growth, intake parameters and nutrient digestibility. Large Animal Review, 25(3), 83–87. https://www.largeanimalreview.com/index.php/lar/article/view/325
Magrin, L., Gottardo, F., Fiore, E., Gianesella, M., Martin, B., Chevaux, E., & Cozzi, G. (2018). Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: Effects on growth, slaughter performance, behavior, and rumen environment. Animal Feed Science and Technology, 241, 84–93. https://doi.org/10.1016/j.anifeedsci.2018.04.021
Masék, T., Mikulec, Ž., Valpotić, H., Kušće, L., Mikulec, N., & Antunac, N. (2008). The influence of live yeast cells (Saccharomyces cerevisiae) on the performance of grazing dairy sheep in late lactation. Veterinarski Arhiv, 78(2), 95–104. https://wwwi.vef.hr/vetarhiv/papers/2008-78-2-1.pdf
Maturana, M., Castillejos, L., Martin-Orue, S. M., Minel, A., Chetty, O., Felix, A. P., & Lesaux, A. A. (2023). Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Frontiers in Veterinary Science, 10, 1279506. https://doi.org/10.3389/fvets.2023.1279506
McCord, J. M. (1979). Superoxide: Superoxide dismutase and oxygen toxicity. Reviews of Biochemistry and Toxicology, 1, 109–124.
Meledina, T. V., Ivanova, V. A., Golovinskaia, O. V., & Harba, R. (2021). Yeast. Morphology and physiology: Study guide. Saint-Petersburg: ITMO University. 68 p. https://books.ifmo.ru/file/pdf/2760.pdf
Mirza, R. A., Muhammad, S. D., & Kareem, K. Y. (2020). Effect of commercial baker's yeast supplementation (Saccharomyces cerevisiae) in diet and drinking water on productive performance, carcass traits, haematology, and microbiological characteristics of local quails. Zanco Journal of Pure and Applied Sciences, 32(3), 200–205. https://doi.org/10.21271/ZJPAS.32.3.21
Mohammed, S., Enas, A., & Farook, S. (2018). Review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal of Entomology and Zoology Studies, 6(2), 629–635. https://doi.org/10.13140/RG.2.2.10675.37926
Moyad, M. A., Robinson, L. E., Kittelsrud, J. M., Reeves, S. G., Weaver, S. E., & Guzman, A. I. (2009). Immunogenic yeast-based fermentation product reduces allergic rhinitis-induced nasal congestion: A randomized, double-blind, placebo-controlled trial. Advances in Therapy, 26, 795–804. https://doi.org/10.1007/s12325-009-0057-y
Newbold, C. J., Wallace, R. J., Chen, X. B., & McIntosh, F. M. (1995). Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. Journal of Animal Science, 73, 1811–1818. https://doi.org/10.2527/1995.7361811x
Newbold, C. J., Wallace, R. J., & McIntosh, F. M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition, 76, 249–261. https://doi.org/10.1079/bjn19960029
Nguyen, T. H., Fleet, G. H., & Rogers, P. L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology, 50(2), 206–212. https://doi.org/10.1007/s002530051278
Nochta, I., Tuboly, T., Halas, V., & Babinszky, L. (2009). Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 93(4), 496–504. https://doi.org/10.1111/j.1439-0396.2008.00835.x
Öztürk, H., Emre, G., & Breves, G. (2016). Effects of hydrolysed yeasts on ruminal fermentation in the rumen simulation technique (Rusitec). Veterinary Medicine, 61, 195–203. https://doi.org/10.17221/8820-VETMED
Olagaray, K. E., Sivinski, S. E., Saylor, B. A., Mamedova, L. K., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2019). Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. Journal of Dairy Science, 102(9), 8092–8107. https://doi.org/10.3168/jds.2019-16315
Omara, I. I., Pender, C. M., White, M. B., & Dalloul, R. A. (2021). The modulating effect of dietary beta-glucan supplementation on expression of immune response genes of broilers during a coccidiosis challenge. Animals, 11(1), 159. https://doi.org/10.3390/ani11010159
Ovinge, L. A., Sarturi, J. O., Galyean, M. L., Ballou, M. A., Trojan, S. J., Campanili, P. R. B., Alrumaih, A. A., & Pellarin, L. A. (2018). Effects of a live yeast in natural-program finishing feedlot diets on growth performance, digestibility, carcass characteristics, and feeding behavior. Journal of Animal Science, 96(2), 684–693. https://doi.org/10.1093/jas/sky011
Patterson, R., Rogiewicz, A., Kiarie, E. G., & Slominski, B. A. (2022). Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Frontiers in Veterinary Science, 9, 1067383. https://doi.org/10.3389/fvets.2022.1067383
Penner, G. B., Aschenbach, J. R., Gäbel, G., & Oba, M. (2009). Epithelial capacity for the apical uptake of short-chain fatty acids is a key determinant for intra-ruminal pH and the susceptibility to sub-acute ruminal acidosis in sheep. The Journal of Nutrition, 139, 1714–1720. https://doi.org/10.3945/jn.109.108506
Perricone, V., Sandrini, S., Irshad, N., Savoini, G., Comi, M., & Agazzi, A. (2022). Yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition. A review. Animals, 12, 1426. https://doi.org/10.3390/ani12111426
Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E., & Newbold, C. J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE, 8(7), e67824. https://doi.org/10.1371/journal.pone.0067824
Plaizier, J., Khafipour, E., Li, S., Gozho, G., & Krause, D. (2012). Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 172, 9–21. https://doi.org/10.1016/j.anifeedsci.2011.12.004
Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signaling. Current Medicinal Chemistry, 11(9), 1163–1182. https://doi.org/10.2174/0929867043365323
Qui, N. H. (2023). Baker's yeast (Saccharomyces cerevisiae) and its application on poultry's production and health: A review. Iraqi Journal of Veterinary Sciences, 37(1), 213–221. https://doi.org/10.33899/ijvs.2022.132912.2146
Roto, S. M., Rubinelli, P. M., & Ricke, S. C. (2015). An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Frontiers in Veterinary Science, 2, 28. https://doi.org/10.3389/fvets.2015.00028
Sallam, S. M. A., Abdelmalek, M. L. R., Kholif, A. E., Zahran, S. M., Ahmed, M. H., Zeweil, H. S., Attia, M. F. A., Osama, H. M., & Olafadehan, O. A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Animal Biotechnology, 31(6), 491–497. https://doi.org/10.1080/10495398.2019.1625783
Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., & Quigley, E. M. M. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649–667. https://doi.org/10.1038/s41575-021-00440-6
Satoshi, S., Kiyoji, T., Hiroyo, K., & Fumio, N. (1989). Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. International Journal of Biochemistry, 21(8), 835–838. https://doi.org/10.1016/0020-711x(89)90280-2
Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 235, 60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010
Sivinski, S. E., Meier, K. E., Mamedova, L. K., Saylor, B. A., Shaffer, J. E., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2022). Effect of Saccharomyces cerevisiae fermentation product on oxidative status, inflammation, and immune response in transition dairy cattle. Journal of Dairy Science, 105(11), 8850–8865. https://doi.org/10.3168/jds.2022-21998
Spring, P., Wenk, C., Connolly, A., & Kiers, A. (2015). A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second-generation mannose-rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition, 3, E8. https://doi.org/10.1017/jan.2015.6
Suarez, C., & Guevara, C. A. (2018). Probiotic use of yeast Saccharomyces cerevisiae in animal feed. Research Journal of Zoology, 1, 1–6. https://doi.org/10.4172/RJZ.1000103
Swyers, K. L., Wagner, J. J., Dorton, K. L., & Archibeque, S. L. (2014). Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavyweight yearling beef steers. Journal of Animal Science, 92, 2538–2545. https://doi.org/10.2527/jas.2013-7559
Tohid, T., Hasan, G., & Alireza, T. (2010). Efficacy of mannanoligosaccharides and humate on immune response to avian influenza (H9) disease vaccination in broiler chickens. Veterinary Research Communications, 34(8), 709–717. https://doi.org/10.1007/s11259-010-9444-8
Tufail, M., Chand, N., Rafiullah, A. S., Khan, R. U., Mobashar, M., & Naz, S. (2019). Mannanoligosaccharide (MOS) in broiler diet during the finisher phase: 2. Growth traits and intestinal histomorphology. Pakistan Journal of Zoology, 51, 597–602. https://doi.org/10.17582/journal.pjz/2019.51.2.597.602
USDA. Leavening agents, yeast, baker's, active dry.
Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132. https://doi.org/10.1264/jsme2.ME14176
Vyas, D., Uwizeye, A., Mohammed, R., Yang, W. Z., Walker, N. D., & Beauchemin, K. A. (2014). The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. Journal of Animal Science, 92(2), 724–732. https://doi.org/10.2527/jas.2013-7072
Wu, C., Yang, Z., Song, C., Liang, C., Li, H., Chen, W., Lin, W., & Xie, Q. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific-pathogen-free chickens. Poultry Science, 97(11), 3837–3846. https://doi.org/10.3382/ps/pey268
Xiao, R., Power, R. F., Mallonee, D., Routt, K., Spangler, L., Pescatore, A. J., Cantor, A. H., Ao, T., Pierce, J. L., & Dawson, K. A. (2012). Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poultry Science, 91(7), 1660–1669. https://doi.org/10.3382/ps.2011-02035
Zanello, G., Meurens, F., Serreau, D., Chevaleyre, C., Melo, S., Berri, M. D., Inca, R., Auclair, E., & Salmon, H. (2013). Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Veterinary Immunology and Immunopathology, 152, 20–27. https://doi.org/10.1016/j.vetimm.2012.09.023
Zebeli, Q., & Ametaj, B. N. (2009). Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. Journal of Dairy Science, 92(8), 3800–3809. https://doi.org/10.3168/jds.2009-2178
Zhang, A. W., Lee, B. D., Lee, S. K., Lee, K. W., An, G. H., Song, K. B., & Lee, C. H. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry Science Journal, 84(7), 1015–1021. https://doi.org/10.1093/ps/84.7.1015
Zhang, B., Guo, Y., & Wang, Z. (2008). The modulating effect of β-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(2), 237–244. https://doi.org/10.5713/ajas.2008.70207
Zhang, J., Wan, K., Xiong, Z. B., Luo, H., Zhou, Q. F., Liu, A. F., Cao, T. T., & He, H. (2021). Effects of dietary yeast culture supplementation on the meat quality and antioxidant capacity of geese. Journal of Applied Poultry Research, 30(1), 100116. https://doi.org/10.1016/j.japr.2020.100
Copyright (c) 2025 Kristina S. Lazebnik, Diana B. Kosyan, Galimzhan K. Duskaev, Vitaly A. Ryazanov

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.