БИОСОВМЕСТИМЫЕ БИОМИМЕТИЧЕСКИЕ ПОЛИМЕРНЫЕ СТРУКТУРЫ С АКТИВНЫМ ОТКЛИКОМ В ИМПЛАНТОЛОГИИ И РЕГЕНЕРАТИВНОЙ МЕДИЦИНЕ

  • Oleg V. Gradov Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН); IEEE EMBS Technical Committee on Bionanotechnology & BioMEMS; IEEE EMBS Technical Committee on Neuroengineering; IEEE Biometrics Council
  • Margarita A. Gradova Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН)
  • Valentin V. Kochervinskii Ведущий научно-исследовательский институт химической технологии Госкорпорации «Росатом» (АО «ВНИИХТ»); Филиал научно-исследовательского физико-химического института имени Л.Я. Карпова (Филиал АО «НИФХИ им. Л.Я. Карпова»)
Ключевые слова: биосовместимость, активные имплантаты, биомиметические полимерные структуры, скаффолды, адаптивные биоматериалы, адресная доставка фармпрепаратов, мембраномиметики

Аннотация

Рассматривается проблема физико-химических критериев биосовместимости активных полимерных имплантатов и реагирующих на стимулы скаффолдов. С позиций физики поверхности и управляемого смачивания рассматриваются возможности динамического управления биосовместимостью и адаптивного изменения свойств имплантатов под действием отклика окружающих тканей. Резюмируются базовые свойства активных биосовместимых и биомиметических имплантируемых материалов, отличающие их от пассивных имплантатов ранних поколений. В числе последних указываются: электрофизическая и электрофизиологическая мембранная биосовместимость (вплоть до аналогии с биомембранами – «мембраномиметики» Фендлера); возбудимость, то есть способность переходить в качественно иное состояние, реагируя на внешний стимул; совместимость параметров согласования и импедансов биомембран и активных имплантируемых материалов; наличие всех релевантных типов сопряжения, то есть конвертирования энергии, свойственных биомембранам (хемиосмотического, электрохимического, электромеханического и т.д.); способность к согласованному с параметрами клеточной среды и регулируемому её состоянием пропусканию и высвобождению фармпрепаратов. Вследствие качественного изменения биомедицинского значения подобных имплантатов (от замещения естественной функции к её восстановлению и поддержанию), рассматривается возможность реализации на данных материалах различных новых биорелевантных функций, таких как способность к сенсингу и актуации, основанным на реактивности и преобразовании сигнала / энергии в данных системах. Особенный интерес представляет адаптивная реализация этих функций в растущем и развивающемся организме в механизмах онтогенеза.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Oleg V. Gradov, Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН); IEEE EMBS Technical Committee on Bionanotechnology & BioMEMS; IEEE EMBS Technical Committee on Neuroengineering; IEEE Biometrics Council

старший научный сотрудник

Margarita A. Gradova, Федеральный исследовательский центр химической физики имени Н.Н. Семенова Российской академии наук (ФИЦ ХФ РАН)

кандидат химических наук, старший научный сотрудник

Valentin V. Kochervinskii, Ведущий научно-исследовательский институт химической технологии Госкорпорации «Росатом» (АО «ВНИИХТ»); Филиал научно-исследовательского физико-химического института имени Л.Я. Карпова (Филиал АО «НИФХИ им. Л.Я. Карпова»)

доктор физико-математических наук, главный научный сотрудник

Литература

Список литератур / References

Alexandre E., Schmitt B., Boudjema K., Merrill E.W., Lutz P.J. Hydrogel networks of poly(ethylene oxide) star-molecules supported by expanded polytetrafluoroethylene membranes: characterization, biocompatibility evaluation and glucose diffusion characteristics. Macromolecular Bioscience, 2004, vol. 4, no. 7, pp. 639-648.

Allenstein U., Ma Y., Arabi-Hashemi A., Zink M., Mayr S.G. Fe–Pd based ferromagnetic shape memory actuators for medical applications: Biocompatibility, effect of surface roughness and protein coatings. Acta Biomaterialia, 2013, vol. 9, no. 3, pp. 5845-5853.

Altankov G., Grinnell F., Groth T. Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1996, vol. 30, no. 3, pp. 385-391.

Anderson A., McConville A., Davis J. Electrochemical bubble rip: A new approach to controlled drug release. Electrochemistry Communications, 2015, vol. 60, pp. 88-91.

Araya M.K., Brownell W.E. Facilitation of rapid temporal processing by ion channel cooperativity suggests coordination through membrane electromechanics. Biophysical Journal, 2016, vol. 110, no. 3, p. 108a.

Aspler J.S., Davis S., Lyne M.B. The dynamic wettability of paper. I: The effect of surfactants, alum, and pH on self-sizing. Tappi Journal, 1984, vol. 67, no. 9, pp. 128-131.

Aspler J.S., Davis S., Lyne M.B. The dynamic wettability of paper. I: The effect of surfactants, alum, and pH on self-sizing. Tappi Journal, 1984, vol. 67, no. 9, pp. 128-131.

Astumian R.D. Stochastic conformational pumping: A mechanism for free-energy transduction by molecules. Annual Review of Biophysics, 2011, vol. 40, pp. 289-313.

Atlam O., Kolhe M. Equivalent electrical model for a proton exchange membrane (PEM) electrolyser. Energy Conversion and Management, 2011, vol. 52, no. 8-9, pp. 2952-2957.

Ayobian-Markazi N., Karimi M., Safar-Hajhosseini A. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: An in vitro study. Lasers in Medical Science, 2015, vol. 30, no. 2, pp. 561-566.

Barnes S. Neuronal excitability: Membrane ion channels. In: Handbook of Neuroprosthetic Methods. Eds. Finn W.E., LoPresti P.G. Boca Raton: CRC Press, 2002, pp. 28-44.

Barrick D.M. Bacterial detachment from membranes: Effect of cell type, cell phase, membrane material, and membrane hydrophobicity. Doct. Diss. Lexington, 1994.

Bertini I., Cavallaro G. Metals in the “omics” world: Copper homeostasis and cytochrome c oxidase assembly in a new light. JBIC Journal of Biological Inorganic Chemistry, 2008, vol. 13, no. 1, pp. 3-14.

Beyder A., Sachs F. Combined voltage-clamp and atomic force microscope for the study of membrane electromechanics. Scanning Probe Microscopy of Functional Materials. New York: Springer, 2010, pp. 461-489.

Blaustein M.P. Phospholipids as ion exchangers: Implications for a possible role in biological membrane excitability and anesthesia. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1967, vol. 135, no. 4, pp. 653-668.

Bona M.D., Arthur B.W. Cyanoacrylate tissue adhesive on a polyglactin scaffold in strabismus surgery: A laboratory study. Journal of American Association for Pediatric Ophthalmology and Strabismus, 2014, vol. 18, no. 1, pp. 21-25.

Bordi F., Cametti C., Gliozzi A. Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode. Bioelectrochemistry, 2002, vol. 57, no. 1, pp. 39-46.

Boyadzhieva S., Sorg K., Danner M., Fischer S.C., Hensel R., Schick B., Wenzel G., Arzt E., Kruttwig K. A self-adhesive elastomeric wound scaffold for sensitive adhesion to tissue. Polymers, 2019, vol. 11, no. 6, p. 942.

Brinkert K., Le Formal F., Li X., Durrant J., Rutherford A.W., Fantuzzi A. Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, vol. 1857, no. 9, pp. 1497-1505.

Brownell W.E., Farrell B., Raphael R.M. Membrane electromechanics at hair-cell synapses. Biophysics of the Cochlea: From Molecules to Models, 2003, pp. 169-176.

Buck R.P. Diffusion-migration impedances for finite, one-dimensional transport in thin layer and membrane cells: An analysis of derived electrical quantities and equivalent circuits. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, vol. 210, no. 1, pp. 1-19.

Cha G.S., Liu D., Meyerhoff M.E., Cantor H.C., Midgley A.R., Goldberg H.D., Brown R.B. Electrochemical performance, biocompatibility, and adhesion of new polymer matrixes for solid-state ion sensors. Analytical Chemistry, 1991, vol. 63, no. 17, pp. 1666-1672.

Chang W.Y. Estimating equivalent circuit parameters of proton exchange membrane fuel cell using the current change method. International Journal of Electrical Power & Energy Systems, 2013, vol. 53, pp. 584-591.

Chen J.H. Investigation of electrowetting dynamic contact angle in capillary flow and application of electrowetting to biochips and lens fabrication. Diss., 2006, (China ref.).

Chen L., Bonaccurso E. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Physical Review E, 2014, vol. 90, no. 2, p. 022401.

Chen X., Fung Y.M.E., Chan W.Y.K., Wong P.S., Yeung H.S., Chan T.W.D. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. Journal of the American Society for Mass Spectrometry, 2011, vol. 22, no. 12, pp. 2232-2245.

Collman J.P., Boulatov R. When two metals are better than one: Biomimetic studies of dioxygen reduction at the bimetallic site of cytochrome oxidase. In Abstracts of Papers of the American Chemical Society, 2002, vol. 224, p. 683.

Cook J.A., Gius D., Wink D.A., Krishna M.C., Russo A., Mitchell J.B. Oxidative stress, redox, and the tumor microenvironment. Seminars in Radiation Oncology, 2004, vol. 14, no. 3, pp. 259-266.

Cordonnier D.J., Forêt M. Biocompatibility criteria in hemodialysis. Present-Day Concepts in the Treatment of Chronic Renal Failure, 1989, vol. 71, pp. 30-35.

Coster H.G.L., Chilcott T.C., Coster A.C.F. Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics, 1996, vol. 40, no. 2, pp. 79-98.

Craig R.G., Hanks C.T. Cytotoxicity of experimental casting alloys evaluated by cell culture tests. Journal of Dental Research, 1990, vol. 69, no. 8, pp. 1539-1542.

Demoz A., Verpoorte E.M.J., Harrison D.J. An equivalent circuit model of ion-selective membrane| insulator| semiconductor interfaces used for chemical sensors. Journal of Electroanalytical Chemistry, 1995, vol. 389, no. 1-2, pp. 71-78.

Deng L., Li Y., Feng F., Zhang H. Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocolloids, 2019, vol. 87, pp. 1-10.

Deng P., Lee Y.K., Zhang T.Y. A nonlinear electromechanical coupling model for electropore expansion in cell electroporation. Journal of Physics D: Applied Physics, 2014, vol. 47, no. 44, p. 445401.

Dermol-Černe, J., Miklavčič, D., Reberšek, M., Mekuč, P., Bardet, S.M., Burke R., Arnaud-Cormos D., Leveque P., O’Connor R. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry, 2018, vol. 122, pp. 103-114.

Dhindsa M.S. Reversible electrowetting on nanostructured scaffolds. Doct. Diss. Cincinnati, 2006, X p.

Djordjevic I., Szili E.J., Choudhury N.R., Dutta N., Steele D.A., Kumar S. Osteoblast biocompatibility on poly (octanediol citrate)/sebacate elastomers with controlled wettability. Journal of Biomaterials Science, Polymer Edition, 2010, vol. 21, no. 8-9, pp. 1039-1050.

Dubey A.K., Balani K., Basu B. 18. Electrically active biocomposites as smart scaffolds for bone tissue engineering. In Woodhead Publishing Series in Biomaterials, Nanomedicine. Webster T.J. (Ed.). Woodhead Publishing, 2012, pp. 537-570.

Duclohier H., Spach G. Artificial membrane excitability revisited and implications for the gating of voltage-dependent ion channels. General Physiology and Biophysics, 2001, vol. 20, no. 4, pp. 361-374.

Eisenbarth E., Velten D., Breme J. Biomimetic implant coatings. Biomolecular Engineering, 2007, vol. 24, no. 1, pp. 27-32.

Eisenberg S.R. Time and space periodic collagen membrane electromechanics. Diss. Cambridge, 1977.

Ervin E.N., White H.S., Baker L.A. Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy. Analytical Chemistry, 2005, vol. 77, no. 17, pp. 5564-5569.

Feldman D.S., Osborne S. Fibrin as a tissue adhesive and scaffold with an angiogenic agent (FGF-1) to enhance burn graft healing in vivo and clinically. Journal of Functional Biomaterials, 2018, vol. 9, no. 4, p. 68.

Fendler J.H. Potential of membrane-mimetic polymers in membrane technology. Journal of Membrane Science, 1987, vol. 30, no. 3, pp. 323-346.

Finkelstein A., Mauro A. Equivalent circuits as related to ionic systems. Biophysical Journal, 1963, vol. 3, no. 3, pp. 215-237.

Folkman J. Controlled drug release from polymers. Hospital Practice, 1978, vol. 13, no. 3, pp. 127-33.

Freger V. Diffusion impedance and equivalent circuit of a multilayer film. Electrochemistry Communications, 2005, vol. 7, no. 9, pp. 957-961.

Fritzsch G., Rumrich G., Ullrich K. J. Anion transport through the contraluminal cell membrane of renal proximal tubule. The influence of hydrophobicity and molecular charge distribution on the inhibitory activity of organic anions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1989, vol. 978, no. 2, pp. 249-256.

Gallagher P.M., Athayde A.L., Ivory C.F. Electrochemical coupling in carrier-mediated membrane transport. Journal of Membrane Science, 1986, vol. 29, no. 1, pp. 49-67.

Gao Y., Li W., Lay W.C., Coster H.G., Fane A.G., Tang C.Y. Characterization of forward osmosis membranes by electrochemical impedance spectroscopy. Desalination, 2013, vol. 312, pp. 45-51.

Ge J., Neofytou E., Cahill III T.J., Beygui R.E., Zare R.N. Drug release from electric-field-responsive nanoparticles. ACS Nano, 2012, vol. 6, no. 1, pp. 227-233.

Gourdon E., Lamarque C.H. Energy pumping with various nonlinear structures: Numerical evidences. Nonlinear Dynamics, 2005, vol. 40, no. 3, pp. 281-307.

Gu H., Mu S., Qiu G., Liu X., Zhang L., Yuan Y., Astruc D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordination Chemistry Reviews, 2018, vol. 364, pp. 51-85.

Guidelli R., Becucci L. Electrochemistry of Biomimetic Membranes. In Applications of Electrochemistry and Nanotechnology in Biology and Medicine II. Boston, MA: Springer, 2012, pp. 147-266.

Guo X., Cheng Y., Zhao X., Luo Y., Chen J., Yuan W.E. Advances in redox-responsive drug delivery systems of tumor microenvironment. Journal of Nanobiotechnology, 2018, vol. 16, no. 1, pp. 1-10.

Habibovic P., Barrere F., Van Blitterswijk C.A., de Groot K., Layrolle P. Biomimetic hydroxyapatite coating on metal implants. Journal of the American Ceramic Society, 2002, vol. 85, no. 3, pp. 517-22.

Haldar R.S., Chauhan R., Kapoor K., Niyogi U.K. Development of a hydrophobic polymer composition with improved biocompatibility for making foldable intraocular lenses. Optical Materials, 2014, vol. 36, no. 7, pp. 1165-1176.

Han S., Zhou Z., Jiang H., Zhang Y. Enzyme pretreatments and dynamic wettability of a poplar surface. Journal of Zhejiang Forestry College, 2009, vol. 26, no. 6, pp. 774-777.

Hanson L.K., Chang C.K., Davis M.S., Fajer J. Electron pathways in catalase and peroxidase enzymic catalysis. Metal and macrocycle oxidations of iron porphyrins and chlorins. Journal of the American Chemical Society, 1981, vol. 103, no. 3, pp. 663-70.

Hardy J.G., Lee J.Y., Schmidt C.E. Biomimetic conducting polymer-based tissue scaffolds. Current Opinion in Biotechnology, 2013, vol. 24, no. 5, pp. 847-854.

Hendriks B.H.W., Kuiper S., As M.V., Renders C.A., Tukker T.W. Electrowetting-based variable-focus lens for miniature systems. Optical Review, 2005, vol. 12, no. 3, pp. 255-259.

Hezi-Yamit A., Sullivan C., Wong J., David L., Chen M., Cheng P., Shumaker D., Wilcox J.N. Udipi K. Impact of polymer hydrophilicity on biocompatibility: Implication for DES polymer design. Journal of Biomedical Materials Research Part A, 2009, vol. 90, no. 1, pp. 133-141.

Higson S.P.J., Vadgama P.M. Diamond like carbon coated films for enzyme electrodes; characterization of biocompatibility and substrate diffusion limiting properties. Analytica Chimica Acta, 1995, vol. 300, no. 1-3, pp. 77-83.

Holmes C.J. Criteria for biocompatibility testing of peritoneal dialysis solutions. Quality Assurance in Dialysis. Dordrecht: Springer, 1999, pp. 257-265.

Hossain M.M., Gao W. How is the surface treatments influence on the roughness of biocompatibility? Trends in Biomaterials and Artificial Organs, 2009, vol. 22, no. 3, pp. 140-154.

Hosseini M.J., Shaki F., Ghazi-Khansari M., Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics, 2013, vol. 5, no. 2, pp. 152–166.

Huang F.L., Wang Q.Q., Wei Q.F., Gao W.D., Shou H.Y., Jiang S. Dynamic wettability and contact angles of poly (vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polymer Letters, 2010, vol. 4, no. 9, pp. 551-558.

Imai Y., Watanabe A., Masuhara E. Effect of roughness of materials on biocompatibility. Artificial Organs, 1981, vol. 5, no. 3, pp. 309-309.

Inganäs O. Electroactive polymers in redox devices-from printed electrochemical hybrid systems to soft matter actuators and electrical biointerfaces. In: International Electrochemical Society. 2006, p. ID57714.

Iogannsen M.G. Microscopy of living tissues in implantable chambers. Ed. Pliss G.B. Leningrad: Nauka [Science], 1980, 144 p.

Isaev D., Isaeva O., Khazipov R., Holmes G. Neuroaminidase via regulation of surface charge controls neuronal and network excitability in the rat hippocampus. Epilepsia, 2006, vol. 47, pp. 192-193.

Işıkver Y., Saraydın D., Aydın H. In vitro swelling studies in simulated physiological solutions and biocompatibility of NIPAM-based hydrogels with some biochemical parameters of human sera. Journal of Macromolecular Science, Part A, 2017, vol. 54, no. 7, pp. 452-457.

Iwasa K.H. Electromechanical coupling in the outer hair cell: A statistical thermodynamic examination. Biophysical Journal, 1998, vol. 74, no. 2, pp. A86-A86.

Iwasa K.H. Negative membrane capacitance of outer hair cells: Electromechanical coupling near resonance. Scientific Reports, 2017, vol. 7, no. 1, pp. 1-8.

Jadhav O.S., Yuan C.D., Rudnyi E., Hohlfeld D., Bechtold T. Nonlinear model order reduction of thermoelectric generator for electrically active implants. International Journal of Bioelectromagnetism, 2018, vol. 20, pp. 5-7.

Jeon I.D., Park K.M., Choi E.P., Park J.Y., Park Y.D., Shin H. Development of scaffold-free tissue constructs with anisotropic cellular assembly using micro-patterned cell-adhesive hydrogels. Korean Polymer Society Research Paper, 2011, vol. 36, no. 1, p. 11.

Jiao K., Li X. Effect of surface dynamic wettability in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2010, vol. 35, no. 17, pp. 9095-9103.

Joe K.L.C. Electromechanics: An analytic solution for graded biological cell under inhomogeneous field. Chemistry and Physics of Lipids, 2007, no. 149, p. 75.

Jones D.P., Sies H. The redox code. Antioxidants & Redox Signaling, 2015, vol. 23, no. 9, pp. 734-746.

Jun I.K., Hess H. A Biomimetic, Self-Pumping Membrane. Advanced Materials, 2010, vol. 22, no. 43, pp. 4823-4825.

Justin G., Finley S., Rahman A.R.A., Guiseppi-Elie A. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomedical Microdevices, 2009, vol. 11, no. 1, pp. 103-115.

Kang Y., Ju X., Ding L.S., Zhang S., Li B.J. Reactive oxygen species and glutathione dual redox-responsive supramolecular assemblies with controllable release capability. ACS Applied Materials & Interfaces, 2017, vol. 9, no. 5, pp. 4475-4484.

Kansu G., Aydin A.K. Evaluation of the biocompatibility of various dental alloys: Part I-Toxic potentials. European Journal of Prosthodontics and Restorative Dentistry, 1996, vol. 4, no. 3, pp. 129-136.

Ketelson H.A., Meadows D.L., Stone R.P. Dynamic wettability properties of a soft contact lens hydrogel. Colloids and Surfaces B: Biointerfaces, 2005, vol. 40, no. 1, pp. 1-9.

Kim S.Y., Lee Y.M. Drug release behavior of electrical responsive poly (vinyl alcohol)/poly (acrylic acid) IPN hydrogels under an electric stimulus. Journal of Applied Polymer Science, 1999, vol. 74, no. 7, pp. 1752-1761.

Kusoglu A., Weber A.Z. Electrochemical/mechanical coupling in ion-conducting soft matter. The Journal of Physical Chemistry Letters, 2015, vol. 6, no. 22, pp. 4547-4552.

Kwon I.C., Bae Y.H., Okano T., Kim S.W. Drug release from electric current sensitive polymers. Journal of Controlled Release, 1991, vol. 17, no. 2, pp. 149-156.

Langer R., Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature, 1976, vol. 263, no. 5580, pp. 797-800.

Lee M.H., Oh N.S., Lee S.W., Kang J.H., Lee S.C., Leesungbok R. Enhancement of dynamic wettability, cell adhesion, and alkaline phosphatase activity of primary cells on titanium substrata with combined surface topographies of microgrooves and acid-etched roughness. Tissue Engineering and Regenerative Medicine, 2010, vol. 7, no. 5, pp. 501-512.

Lee Y.J., Son H.S., Jung G.B., Kim J.H., Choi S., Lee G.J., Park H.K. Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Materials Science and Engineering: C, 2015, vol. 51, pp. 43-50.

Lennicke C., Rahn J., Lichtenfels R., Wessjohann L.A., Seliger B. Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 2015, vol. 13, no. 1, pp. 1-19.

Leung K.C.F., Xuan S., Lo C.M. Reversible switching between hydrophilic and hydrophobic superparamagnetic iron oxide microspheres via one-step supramolecular dynamic dendronization: Exploration of dynamic wettability. ACS Applied Materials & Interfaces, 2009, vol. 1, no. 9, pp. 2005-2012.

Li J. On the possibility of strong artificial life. Open Journal of Philosophy, 2018, vol. 8, no. 5, pp. 495-505.

Li L., Liu C., Ren H., Wang Q.H. Optical switchable electrowetting lens. IEEE Photonics Technology Letters, 2016, vol. 28, no. 14, pp. 1505-1508.

Li L., Wang J.H., Wang Q.H., Wu S.T. Displaceable and focus-tunable electrowetting optofluidic lens. Optics Express, 2018, vol. 26, no. 20, pp. 25839-25848.

Li X., Fan X., Askounis A., Wu K., Sefiane K., Koutsos V. An experimental study on dynamic pore wettability. Chemical Engineering Science, 2013, vol. 104, pp. 988-997.

Li Y.F., Chen C., Qu Y., Gao Y., Li B., Zhao Y., Chai Z. Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, vol. 80, no. 12, pp. 2577-2594.

Lipchinsky A. Electromechanics of polarized cell growth. Biosystems, 2018, no. 173, pp. 114-132.

Loubet B., Hansen P.L., Lomholt M.A. Electromechanics of a membrane with spatially distributed fixed charges: Flexoelectricity and elastic parameters. Physical Review E, 2013, vol. 88, no. 6, p. 062715.

Lu G. Bulk dissipation in nanofluid dynamic wetting: Wettability-related parameters. Dynamic Wetting by Nanofluids. Berlin, Heidelberg: Springer, 2016, pp. 59-76.

Luo X., Cui X.T. Electrochemically controlled release based on nanoporous conducting polymers. Electrochemistry Communications, 2009, vol. 11, no. 2, pp. 402-404.

Luo X., Cui X.T. Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochemistry Communications, 2009, vol. 11, no. 10, pp. 1956-1959.

Machts R., Reuter T., Prokop P.V., Schewtschenko O., Stubenrauch M., Schilling C., Witte H. Energy harvesting for active implants: powering a ruminal pH-monitoring system. Current Directions in Biomedical Engineering, 2015, vol. 1, no. 1, pp. 18-21.

Massoumi B., Abbasian M., Jahanban-Esfahlan R., Mohammad-Rezaei R., Khalilzadeh B., Samadian H., Rezaei A., Derakhshankhah H., Jaymand M. A novel bio-inspired conductive, biocompatible, and adhesive terpolymer based on polyaniline, polydopamine, and polylactide as scaffolding biomaterial for tissue engineering application. International Journal of Biological Macromolecules, 2020, vol. 147, pp. 1174-1184.

Masuda R., Mochizuki M., Hozumi K., Takeda A., Uchinuma E., Yamashina S., Nomizu M., Kadoya Y. A novel cell-adhesive scaffold material for delivering keratinocytes reduces granulation tissue in dermal wounds. Wound Repair and Regeneration, 2009, vol. 17, no. 1, pp. 127-135.

McAdams E.T., Jossinet J. Tissue impedance: a historical overview. Physiological Measurement, 1995, vol. 16, no. 3A, p. A1.

Messer, R. L., Lucas, L.C. Cytotoxicity of nickel–chromium alloys: Bulk alloys compared to multiple ion salt solutions. Dental Materials, 2000, vol. 16, no. 3, pp. 207-212.

Mizrahi B., Weldon C., Kohane D.S. Tissue adhesives as active implants. In Active implants and scaffolds for tissue regeneration. Berlin, Heidelberg: Springer, 2010, pp. 39-56.

Moghaddam M.S., Heiny M., Shastri V.P. Enhanced cellular uptake of nanoparticles by increasing the hydrophobicity of poly (lactic acid) through copolymerization with cell-membrane-lipid components. Chemical Communications, 2015, vol. 51, no. 78, pp. 14605-14608.

Morro A., Abrusci C., Pablos J.L., Marin I., Garcia F.C., García J.M. Inherent antibacterial activity and in vitro biocompatibility of hydrophilic polymer film containing chemically anchored sulfadiazine moieties. European Polymer Journal, 2017, vol. 91, pp. 274-282.

Mounicou S., Szpunar J., Lobinski R. Metallomics: The concept and methodology. Chemical Society Reviews, 2009, vol. 38, no. 4, pp. 1119-1138.

Moya A.A. Electric circuits modelling the low-frequency impedance of ideal ion-exchange membrane systems. Electrochimica Acta, 2012, vol. 62,pp. 296-304.

Murdan S. Electro-responsive drug delivery from hydrogels. Journal of Controlled Release, 2003, vol. 92, no. 1-2, pp. 1-17.

Naumowicz M., Kotynska J., Petelska A., Figaszewski Z. Impedance analysis of phosphatidylcholine membranes modified with valinomycin. European Biophysics Journal, 2006, vol. 35, no. 3, pp. 239-246.

Nazaruk E., Majkowska-Pilip A., Godlewska M., Salamończyk M., Gawel D. Electrochemical and biological characterization of lyotropic liquid crystalline phases–retardation of drug release from hexagonal mesophases. Journal of Electroanalytical Chemistry, 2018, vol. 813, pp. 208-215.

Nieto A., Colilla M., Balas F., Vallet-Regi M. Surface electrochemistry of mesoporous silicas as a key factor in the design of tailored delivery devices. Langmuir, 2010, vol. 26, no. 7, pp. 5038-5049.

Nikonenko V.V., Kozmai A.E. Electrical equivalent circuit of an ion-exchange membrane system. Electrochimica Acta, 2011, vol. 56, no. 3, pp. 1262-1269.

Niya S.M.R., Hoorfar M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique. A review. Journal of Power Sources, 2013, vol. 240, pp. 281-293.

Olson E.T. The ontological basis of strong artificial life. Artificial Life, 1997, vol. 3, no. 1, pp. 29-39.

Omura Y., Herter F.P., Albert C., Nisteruk C. Electrocardiograms obtained from an equivalent circuit of the cardiac cell membrane by supplying artificially composed membrane action potentials. ASAIO Journal, 1964, vol. 10, no. 1, pp. 302-310.

Otero T.F., Alfaro M., Martinez V., Perez M.A., Martinez J.G. Biomimetic structural electrochemistry from conducting polymers: Processes, charges, and energies. Coulovoltammetric results from films on metals revisited. Advanced Functional Materials, 2013, vol. 23, no. 31, pp. 3929-3940.

Otero T.F., Martinez J.G., Arias-Pardilla J. Biomimetic electrochemistry from conducting polymers. A review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochimica Acta, 2012, vol. 84, pp. 112-128.

Ottolini G. Definition and control of the biocompatibility of a new hydrophilic polymer. Ophthalmic Optics, 1986, vol. 601, pp. 148-154.

Owicki J.C., Parce J.W. Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification. Biosensors and Bioelectronics, 1992, vol. 7, no. 4, pp. 255-272.

Park J.S., Choi J.H., Yeon K.H., Moon S.H. An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy. Journal of Colloid and Interface Science, 2006, vol. 294, no. 1, pp. 129-138.

Peng L., Feng A., Huo M., Yuan J. Ferrocene-based supramolecular structures and their applications in electrochemical responsive systems. Chemical Communications, 2014, vol. 50, no. 86, pp. 13005-13014.

Pervaiz S., Clement M.V. Tumor intracellular redox status and drug resistance-serendipity or a causal relationship? Current Pharmaceutical Design, 2004, vol. 10, no. 16, pp. 1969-1977.

Pommer A., Köller M., Hahn M.P., Muhr G. Effect of different processing modalities on cytotoxicity and biocompatibility of shape memory alloys. European Surgical Research, 1999, vol. 31, no. 1, pp. 169.

Pypen C., Leenders H., Gomes P.M., Dekkers R., Helsen J., Plenk J.H., De Bruijn J.D. In-vitro cytotoxicity and bone biocompatibility of powder metallurgically produced cp. Nb and Nb-Mo alloys. Proc. 25th Annual Meeting of the Society for Biomaterials. Publ. Society for Biomaterials, 1999, p. 588.

Qian F., Ermilov S., Murdock D., Brownell W.E., Anvari B. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. Review of Scientific Instruments, 2004, vol. 75, no. 9, pp. 2937-2942.

Qin Y., Li X., Yin Y. Modeling of liquid water transport in a proton exchange membrane fuel cell gas flow channel with dynamic wettability. International Journal of Energy Research, 2018, vol. 42, no. 10, pp. 3315-3327.

Rahimipour S., Salahinejad E., Sharifi E., Nosrati H., Tayebi L. Structure, wettability, corrosion and biocompatibility of nitinol treated by alkaline hydrothermal and hydrophobic functionalization for cardiovascular applications. Applied Surface Science, 2020, vol. 506, p. 144657.

Raine D.J., Norris V. Network structure of metabolic pathways. Journal of Biological Physics and Chemistry, 2011, vol. 1, pp. 89-94.

Reinecke H., MacDonald G.H., Hauschka S.D., Murry C.E. Electromechanical coupling between skeletal and cardiac muscle: Implications for infarct repair. The Journal of cell biology, 2000, vol. 149, no. 3, pp. 731-740.

Rickert D., Lendlein A., Kelch S., Fuhrmann R., Franke R.P. Detailed evaluation of the agarose diffusion test as a standard biocompatibility procedure using an image analysis system. Influence of plasma sterilization on the biocompatibility of a recently developed photoset-polymer. Biomedizinische Technik, 2002, vol. 47, no. 11, pp. 285-289.

Römer W., Steinem C. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophysical Journal, 2004, vol. 86, no. 2, pp. 955-965.

Rosen P.S., Sahlin H., Seemann R., Rosen A.S. A 1–7 year retrospective follow-up on consecutively placed 7-mm-long dental implants with an electrowetted surface. International Journal of Implant Dentistry, 2018, vol. 4, no. 1, pp. 1-6.

Rupp F., Scheideler L., Rehbein D., Axmann D., Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials, 2004, vol. 25, no. 7-8, pp. 1429-1438.

Ryu Y.S., Kim M.H. Model membrane-mediated cell alignment through surface hydrophobicity. Molecular Crystals and Liquid Crystals, 2016, vol. 636, no. 1, pp. 149-154.

Sachs F., Brownell W.E., Petrov A.G. Membrane electromechanics in biology, with a focus on hearing. MRS Bulletin, 2009, vol. 34, no. 9, pp. 665-670.

San Roman J. Polymeric biomaterials in vascular surgery. I. Structure and morphology of the cardiovascular system, criteria of biocompatibility and behaviour of implants in contact with blood. Revista de Plasticos Modernos, 1994, vol. 67, no. 451, pp. 33-51.

Sankoh S., Vagin M.Y., Sekretaryova A.N., Thavarungkul P., Kanatharana P., Mak W.C. Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release. Electrochimica Acta, 2017, vol. 228, pp. 407-412.

Saraydin D., Karadag B., Cetinkaya S., Güven O. Preparation of acrylamide/maleic acid hydrogels and their biocompatibility with some biochemical parameters of human serum. Physics and Chemistry, 1995, vol. 46, no. 4-6, pp. 1049-1052.

Schmitt E.K., Weichbrodt C., Steinem C. Impedance analysis of gramicidin D in pore-suspending membranes. Soft Matter, 2009, vol. 5, no. 17, pp. 3347-3353.

Schneemilch M., Welters W.J., Hayes R.A., Ralston J. Electrically induced changes in dynamic wettability. Langmuir, 2000, vol. 16, no. 6, pp. 2924-2927.

Sergeeva N.S., Sviridova I.K., Frank G.A., Kirsanova V.A., Akhmedova S.A., Popov A.A. Criteria of biocompatibility of materials for bone defect repair. Bulletin of Experimental Biology and Medicine, 2014, vol. 157, no. 5, pp. 689-694.

Shi W., Chance M.R. Metallomics and metalloproteomics. Cellular and Molecular Life Sciences, 2008, vol. 65, no. 19, pp. 3040-3048.

Shivasiddaramaiah A.G., Mallik U.S., Mahato R., Shashishekar C., Shivaramu L., Prashantha S. Evaluation of biocompatibility of Cu-Al-Be-Mn quaternary shape memory alloys using antibacterial test by agarwell diffusion method. Materials Today: Proceedings, 2019, vol. 17, pp. 61-69.

Sittinger M., Reitzel D., Dauner M., Hierlemann H., Hammer C., Kastenbauer E., Planck H., Burmester G.R., Bujia J. Resorbable polyesters in cartilage engineering: Affinity and biocompatibility of polymer fiber structures to chondrocytes. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1996, vol. 33, no. 2, pp. 57-63.

Solomons C.C., Handrich E.M. Platelet biochemistry and function. Possible use in evaluating biocompatibility. Polymer Science Technology, 1975, vol. 7, pp. 9-16.

Song K., Li L., Li R., Lim M., Liu P., Liu T. Preparation, mass diffusion, and biocompatibility analysis of porous-channel controlled calcium-alginate-gelatin hybrid microbeads for in vitro culture of NSCs. Applied Biochemistry and Biotechnology, 2014, vol. 173, no. 3, pp. 838-850.

Sperelakis N., Kalloor B. Effect of variation in membrane excitability on propagation velocity of simulated action potentials for cardiac muscle and smooth muscle in the electric field model for cell-to-cell transmission of excitation. IEEE transactions on biomedical engineering, 2004, vol. 51, no. 12, pp. 2216-2219.

Steinem C., Janshoff A., Ulrich W.P., Sieber M., Galla H.J. Impedance analysis of supported lipid bilayer membranes: A scrutiny of different preparation techniques. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1996, vol. 1279, no. 2, pp. 169-180.

Stevens C.F. Interactions between intrinsic membrane protein and electric field. An approach to studying nerve excitability. Biophysical Journal, 1978, vol. 22, no. 2, pp. 295-306.

Stratta P., Canavese C., Segoloni G.P., Dogliani M., Racca M., Coppo R., Vercellone A. Criteria of the biocompatibility of the membranes used in dialysis. Minerva Nefrologica, 1981, vol. 28, no. 2, pp. 109-111.

Sun T., Qing G. Biomimetic smart interface materials for biological applications. Advanced Materials, 2011, vol. 23, no. 12, pp. 57-77.

Tagaya M., Okano S., Murataka T., Handa H., Ichikawa S., Takahashi S. Biocompatibility of a polymer-coated membrane possessing a hydrophilic blood-contacting layer: Adsorption-related assessment. The International Journal of Artificial Organs, 2020, vol. 43, no. 6, pp. 405-410.

Tarr M., Trank J. Equivalent circuit of frog atrial tissue as determined by voltage clamp-unclamp experiments. The Journal of General Physiology. 1971, vol. 58, no. 5, pp. 511-522.

Tatsuma T., Takada K., Matsui H., Oyama N. Electrochemically controllable phase transition and thermally controllable electrochemistry. Macromolecules, 1994, vol. 27, no. 22, pp. 6687-6689.

Tejero R., Anitua E., Orive G. Toward the biomimetic implant surface: Biopolymers on titanium-based implants for bone regeneration. Progress in Polymer Science, 2014, vol. 39, no. 7, pp. 1406-1447.

Terakawa S. Excitability of squid axon membrane in the absence of ion-concentration gradient across the membrane. Upsala Journal of Medical Sciences, 1980, vol. 85, no. 3, pp. 217-224.

Terrettaz S., Stora T., Duschl C., Vogel H. Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance Langmuir, 1993, vol. 9, no. 5, pp. 1361-1369.

Thanonkaew A., Benjakul S., Visessanguan W., Decker E.A. The effect of metal ions on lipid oxidation, colour and physicochemical properties of cuttlefish (Sepia pharaonis) subjected to multiple freeze–thaw cycles. Food Chemistry, 2006, vol. 95, no. 4, pp. 591-599.

Tomioka Y., Takashima S., Moriya M., Shimada H., Hirose F., Hirano-Iwata A., Mizugaki Y. Equivalent circuit model modified for free-standing bilayer lipid membranes beyond 1 TΩ. Japanese Journal of Applied Physics, 2019, vol. 58, no. SD, p. SDDK02.

Tsubata T., Tezuka T., Kurane R. Change of cell membrane hydrophobicity in a bacterium tolerant to toxic alcohols. Canadian Journal of Microbiology, 1997, vol. 43, no. 3, pp. 295-299.

Udipi K., Hezi-Yamit A., Chen M., Cheng P., Wong J., Sullivan C., Wilcox J.N. Importance of polymer hydrophilicity/hydrophobicity on biocompatibility of DES coatings. American Journal of Cardiology, 2007, vol. 100, no. 8 A, pp. 162L-162L.

Usyk T.P., Belik M.E., Michailova A., McCulloch A.D. Three-dimensional model of cardiac electromechanics: Cell to organ // Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, 2002, pp. 1220-1221.

Vallejo-Giraldo C., Kelly A., Biggs M.J.P. Biofunctionalisation of electrically conducting polymers. Drug Discovery Today, 2014, vol. 19, no. 1, pp. 88-94.

Wang G., Yu Y.L., Yu W.J. Effects of temperature on the dynamic adhesive wettability of PF resin on bamboo surface. Journal of Beijing Forestry University, 2007, vol. 29, no. 3, pp. 149-153.

Wang X., Wang F., Yu Z., Zhang Y., Qi C., Du L. Surface free energy and dynamic wettability of wood simultaneously treated with acidic dye and flame retardant. Journal of Wood Science, 2017, vol. 63, no. 3, pp. 271-280.

Wei C., Pan W.J., Hung M.S. The effects of substrate roughness and associated surface properties on the biocompatibility of diamond-like carbon films. Surface and Coatings Technology, 2013, vol. 224, pp. 8-17.

Wojtczyk H., Graf H., Martirosian P., Ballweg V., Kraiger M., Pintaske J., Schick F. Quantification of direct current in electrically active implants using MRI methods. Zeitschrift für Medizinische Physik, 2011, vol. 21, no. 2, pp. 135-146.

Xavier J.C., Hordijk W., Kauffman S., Steel M., Martin W.F. Autocatalytic chemical networks at the origin of metabolism. Proceedings of the Royal Society B, 2020, vol. 287, no. 1922, p. 2019237.

Xiong Y., Ouyang L., Liu Y., Xie Q., Wang J. One of the most important parts for bio-elementomics: specific correlation study of bio-elements in a given tissue. Journal of Chinese Mass Spectrometry Society, 2006, vol. 27, pp. 35-36.

Ye Q., Park J.E., Gugnani K., Betharia S., Pino-Figueroa A., Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics, 2017, vol. 9, pp. 1028-1046.

Yuan C., Kreß S., Sadashivaiah G., Rudnyi E.B., Hohlfeld D., Bechtold T. Towards efficient design optimization of a miniaturized thermoelectric generator for electrically active implants via model order reduction and submodeling technique. International Journal for Numerical Methods in Biomedical Engineering, 2020, vol. 36, no. 4, p. e3311.

Yuan Q., Zhu X., Sayre L.M. Chemical nature of stochastic generation of protein-based carbonyls: Metal-catalyzed oxidation versus modification by products of lipid oxidation. Chemical Research in Toxicology, 2007, vol. 20, no. 1, pp. 129-139.

Zhang A., Jung K., Li A., Liu J., Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science, 2019, vol. 99, p. 101164.

Zhang Q., Leng Y. Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials, 2005, vol. 26, no. 18, pp. 3853-3859.

Zhang Q., Leng Y., Xin R. A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials, 2005, vol. 26, no. 16, pp. 2857-2865.

Zhang W., Ma J., Wang P., Wang Z., Shi F., Liu H. Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy. Journal of Membrane Science, 2016, vol. 502, pp. 37-47.

Zhang W., Tan N.G., Fu B., Li S.F. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics, 2015, vol. 7, no. 3, pp. 426-438.

Zhou J., Lu L., Byrapogu K., Wootton D.M., Lelkes P.I., Fair R. Electrowetting based multi-microfluidics array printing of high resolution tissue construct with embedded cells and growth factors. Virtual and Rapid Manufacturing. CRC Press, 2007, pp. 265-274.

Zilberman M. (Ed.). Active implants and scaffolds for tissue regeneration. Berlin: Springer, 2011, pp. 1-24.


Просмотров аннотации: 166
Загрузок PDF: 104
Опубликован
2023-02-28
Как цитировать
Gradov, O., Gradova, M., & Kochervinskii, V. (2023). БИОСОВМЕСТИМЫЕ БИОМИМЕТИЧЕСКИЕ ПОЛИМЕРНЫЕ СТРУКТУРЫ С АКТИВНЫМ ОТКЛИКОМ В ИМПЛАНТОЛОГИИ И РЕГЕНЕРАТИВНОЙ МЕДИЦИНЕ. Siberian Journal of Life Sciences and Agriculture, 15(1), 346-377. https://doi.org/10.12731/2658-6649-2023-15-1-346-377
Раздел
Научные обзоры и сообщения