ХИМИЧЕСКИЕ СВОЙСТВА И ПРИМЕНЕНИЕ НИТРОПИРИДИНОВ
Аннотация
Обоснование. Пиридины – одни из самых распространенных гетероциклов, производные которых широко применяются в фармацевтике, агрохимии, а также в производстве новых материалов. Поэтому всестороннее изучение химического поведения различных производных пиридинов будет продолжать оставаться актуальной задачей органической химии. Данный литературный обзор посвящен систематизации и анализу химических свойств нитропроизводных пиридина, начиная с первой половины XX в. и до настоящего времени. В работе рассмотрены, как реакции, идущие по нитро-группе (восстановление под действием различных химических агентов, замещение, конденсация), так и реакции по пиридиновому циклу. Также показаны основные области применения нитропиридинов.
Цель. Обобщить и систематизировать основные типы реакций, характерные для нитропиридинов, показать особенности их химических свойств, связанных с превращениями нитрогруппы, ее влиянием на подвижность заместителей в пиридиновом цикле, а также на активность гетероцикла в целом.
Материалы и методы. Для достижения поставленной цели исследования был произведён обзор научной литературы по основным типам химических реакций, характерным для нитропроизводных пиридина и наиболее значимым областям их применения.
Результаты. В данной работе обобщены результаты экспериментальных исследований по химическим свойствам и применению нитропиридинов, с начала прошлого столетия и до настоящего времени.
Заключение. Таким образом, в результате анализа источников, посвященных химическим свойствам и применению нитропиридинов, был составлен краткий литературный обзор, включающий основные типы реакций, характерные для исследуемых соединений, обозначены основные их области применения.
Скачивания
Литература
Список литературы
Беспрозванных В.Г., Первадчук В.П. Нелинейная оптика: учеб. пособие. Пермь: Изд-во Перм. гос. техн. ун-та. 2011. 200 с.
Иванова Е.В., Никишина М.Б., Мухторов Л.Г., Шахкельдян И.В., Атрощенко Ю.М. Методы синтеза нитропиридинов // Siberian Journal of Life Sciences and Agriculture. 2021. Т. 13. № 6. С. 177-200. https://doi.org/10.12731/2658-6649-2021-13-6-177-200
Иванова Е.В., Никишина М.Б., Третьякова А.В., Мухторов Л.Г., Переломов Л.В., Атрощенко Ю.М. Изучение фунгицидной активности новых производных 7-R-1,5-динитро-3,7-диазабицикло[3.3.1]нонан-2-она // Siberian Journal of Life Sciences and Agriculture. 2021. Т. 13. № 5. С. 307-320. https://doi.org/10.12731/2658-6649-2021-13-5-307-320
Пат. WO2013129973 A1. 2-нитрогетерилтиоцианаты для лечения грибковых инфекций, фармацевтическая композиция и их применение / Рябова С.Ю., Суровцев В.В. заявл. 27.02.2013; опубл. 06.09.2013.
Сингх М.С., Чоудхури С. Последние разработки в области многокомпонентных реакций без растворителей: идеальная синергия для экологически совместимого органического синтеза // Rsc Advances. 2012. Т. 2. № 11. С. 4547-4592.
Andreassen E.J., Bakke J.M. Preparation of 6-azaoxindole (6-azaindol-2(3H)-one) and substituted derivatives // J. Heterocyclic Chem. 2006. V. 43. P. 49-54.
Andreassen E.J., Bakke J.M., Sletvold I., Svensen H. Nucleophilic alkylations of 3-nitropyridines // Org. Biomol. Chem. 2004. V. 2. P. 2671-2676.
Asghar B. H. Kinetic and equilibrium studies of σ-adduct formation and nucleophilic substitution in the reactions of 2-chloro-3, 5-dinitropyridine and 2-ethoxy-3, 5-dinitropyridine with p-substituted anilines in DMSO //Monatshefte für Chemie-Chemical Monthly. 2013. Т. 144. № 3. С. 301-306.
Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P. Advances in science and technology of modern energetic materials: An overview // Journal of Hazardous Materials. 2008. V. 151. P. 289-305.
Benjahad A. et al. 3-Iodo-4-phenoxypyridinones (IOPY’s), a new family of highly potent non-nucleoside inhibitors of HIV-1 reverse transcriptase //Bioorganic & medicinal chemistry letters. 2003. Т. 13. № 24. С. 4309-4312.
Bhuvaneshwari D.S., Elango K.P. Solvent hydrogen bonding and structural effects on reaction of 2-chloro-3,5-dinitropyridine with para-substituted anilines in dimethylformamide/acetonitrile mixtures // Journal of the Indian Chemical Society. 2011. V. 88. P. 1547-1551.
Bosshard C. et al. Organic nonlinear optical materials. CRC press. 2020.
Buss A.D., Butler M.S. Natural Product Chemistry for Drug Discovery. The Royal Society of Chemistry: Cambridge. UK. 2010.
da Silva J. P. et al. Electrochemical, mechanistic, and DFT studies of amine derived diphosphines containing Ru (II)cymene complexes with potent in vitro cytotoxic activity against HeLa and triple-negative breast cancer cells MDA-MB-231 //Dalton Transactions. 2020. Т. 49. № 45. С. 16498-16514.
Ferrari A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems //Nanoscale. 2015. Т. 7. № 11. С. 4598-4810.
Kamanina N. V. Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system //Journal of Optics A: Pure and Applied Optics. 2002. Т. 4. № 5. С. 571.
Katada, I. Polarization of aromatic heterocyclic compounds. LIII. Deoxidation of pyridine and quinoline 1-oxides by thermal decomposition // J. Pharm. Soc. Japan. 1947. V. 67. P. 53-55.
Kodimuthali A. et al. A simple synthesis of aminopyridines: Use of amides as amine source //Journal of the Brazilian Chemical Society. 2010. Т. 21. С. 1439-1445.
Komor R. et al. Application of different alpha-1-thioglycosides preparation methods in synthesis of 5-nitro-2-pyridyl 1-thioglycosides substrates in synthesis of conjugates with uridine moiety. Part I //Acta Poloniae Pharmaceutica. 2012. Т. 69. № 6. С. 1259-1269.
Kuduk S.D., Di Pardo R.M., Bock M.G. Tetrabutylammonium Salt Induced Denitration of Nitropyridines: Synthesis of Fluoro-, Hydroxy-, and Methoxypyridines // Org. Lett. 2005. V. 7. P. 577-579.
Kumar N., Singh G., Khatoon S., Yadav A.K. Synthesis and antimicrobial activities of novel 10H-pyrido[3,2-b][1,4]benzo[b]thiazine ribofuranosides // Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry. 2003. V. 42. P. 2015-2018.
Lach F., Koza P. Practical Way to Imidazo [4, 5-b] and [4, 5-c] Pyridine-2-ones via Cascade Ureidation/Palladium-Catalyzed Cyclization //ACS Combinatorial Science. 2012. Т. 14. №. 9. С. 491-495.
Ling C.G., Lu S. Synthesis of new unsymmetric N,N′-dipyridylurea derivatives by selenium and selenium dioxide-catalyzed reductive carbonylation of substituted nitropyridines // Tetrahedron. 2003. V. 59. P. 8251-8256.
Murugan R. Pyridines: from lab to production. Chapter 4 - Substituent Modifications // Best Synthetic Methods. 2013. P. 375-411.
Pat. WO2011/69898 A1. Novel cationic aminopyridines, dye composition comprising a cationic aminopyridine, processes therefor and uses thereof / Fadli A. заявл. 03.12.2010; опубл. 16.06.2011.
Sobhani-Nasab A. et al. Five-component domino synthesis of tetrahydropyridines using hexagonal PbCr x Fe12− x O19 as efficient magnetic nanocatalyst //Research on Chemical Intermediates. 2017. Т. 43. № 11. С. 6155-6165.
Tjosås F., Pettersen N.M., Fiksdahl A. α-(3-Pyridyl)malonates: preparation and synthetic applications // Tetrahedron. 2007. V. 63. P. 11893-11901.
Türker L., Variş S. A review of polycyclic aromatic energetic materials //Polycyclic Aromatic Compounds. 2009. Т. 29. № 4. С. 228-266.
Varvaresou A., Iakovou K. Derivatives of 5-Oxy-pyrido[2,3-b]quinoxaline-9-carboxylic Acid: A Tricyclic System Useful for the Synthesis of Potential Intercalators // J. Heterocyclic Chem. 2002. V. 39. P. 1173.
Vitaku E., Smith D. T., Njardarson J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective // Journal of medicinal chemistry. 2014. Т. 57. № 24. С. 10257-10274.
Winkler M., Cakir B., Sander W. 3, 5-Pyridyne A Heterocyclic meta-Benzyne Derivative // Journal of the American Chemical Society. 2004. Т. 126. № 19. С. 6135-6149.
Zhang L. Y. et al. Synthetic optimization of TACOT-derived nitrogen-rich energetic compounds and reaction mechanism research // Synthetic Communications. 2021. Т. 51. № 18. С. 2808-2816.
References
Besprozvannykh V.G., Pervadchuk V.P. Nelineynaya optika: ucheb. posobiye. [Nonlinear optics: a tutorial.]. Perm’: Izd-vo Perm. gos. tekhn. un-ta, 2011, 200 p.
Ivanova E.V., Nikishina M.B., Mukhtarov L.G., Shakhkeldyan I.V., Atroschenko Yu.M. Methods of synthesis of nitropyridines. Siberian Journal of Life Sciences and Agriculture. 2021. V. 13. No. 6. P. 177-200. https://doi.org/10.12731/2658-6649-2021-13-6-177-200
Ivanova E.V., Nikishina M.B., Tretyakova A.V., Mukhtorov L.G., Perelomov L.V., Atroschenko Yu.M. Study of fungicidal activity of new derivatives of 7-R-1,5-dinitro-3,7-diazabicyclo[3.3.1]nonan-2-she. Siberian Journal of Life Sciences and Agriculture. 2021. V. 13. No. 5. P. 307-320. https://doi.org/10.12731/2658-6649-2021-13-5-307-320
Ryabova S.Yu., Surovtsev V.V. Pat. WO2013129973 A1. 2-nitrogeterylthiocyanates for the treatment of fungal infections, pharmaceutical composition and their use / application 02/27/2013; publ. 09/06/2013.
Singh M.S., Chowdhury S. Recent developments in the field of multicomponent solvent-free reactions: ideal synergy for environmentally compatible organic synthesis. Rsc Advances. 2012. V. 2. No. 11. p. 4547-4592.
Andreassen E.J., Bakke J.M. Preparation of 6-azaoxindole (6-azaindol-2(3H)-one) and substituted derivatives // J. Heterocyclic Chem. 2006. V. 43. P. 49-54.
Andreassen E.J., Bakke J.M., Sletvold I., Svensen H. Nucleophilic alkylations of 3-nitropyridines. Org. Biomol. Chem. 2004. V. 2. P. 2671-2676.
Asghar B. H. Kinetic and equilibrium studies of σ-adduct formation and nucleophilic substitution in the reactions of 2-chloro-3, 5-dinitropyridine and 2-ethoxy-3, 5-dinitropyridine with p-substituted anilines in DMSO. Monatshefte für Chemie-Chemical Monthly. 2013. V. 144. No. 3. С. 301-306.
Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P. Advances in science and technology of modern energetic materials: An overview. Journal of Hazardous Materials. 2008. V. 151. P. 289-305.
Benjahad A. et al. 3-Iodo-4-phenoxypyridinones (IOPY’s), a new family of highly potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic & medicinal chemistry letters. 2003. V. 13. No. 24. P. 4309-4312.
Bhuvaneshwari D.S., Elango K.P. Solvent hydrogen bonding and structural effects on reaction of 2-chloro-3,5-dinitropyridine with para-substituted anilines in dimethylformamide/acetonitrile mixtures. Journal of the Indian Chemical Society. 2011. V. 88. P. 1547-1551.
Bosshard C. et al. Organic nonlinear optical materials. CRC press. 2020.
Buss A.D., Butler M.S. Natural Product Chemistry for Drug Discovery. The Royal Society of Chemistry: Cambridge. UK. 2010.
da Silva J. P. et al. Electrochemical, mechanistic, and DFT studies of amine derived diphosphines containing Ru (II)cymene complexes with potent in vitro cytotoxic activity against HeLa and triple-negative breast cancer cells MDA-MB-231. Dalton Transactions. 2020. V. 49. No. 45. P. 16498-16514.
Ferrari A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015. V. 7. No. 11. P. 4598-4810.
Kamanina N. V. Optical investigations of a C70-doped 2-cyclooctylamino-5-nitropyridine–liquid crystal system. Journal of Optics A: Pure and Applied Optics. 2002. V. 4. No. 5. P. 571.
Katada I. Polarization of aromatic heterocyclic compounds. LIII. Deoxidation of pyridine and quinoline 1-oxides by thermal decomposition. J. Pharm. Soc. Japan. 1947. V. 67. P. 53-55.
Kodimuthali A. et al. A simple synthesis of aminopyridines: Use of amides as amine source. Journal of the Brazilian Chemical Society. 2010. V. 21. P. 1439-1445.
Komor R. et al. Application of different alpha-1-thioglycosides preparation methods in synthesis of 5-nitro-2-pyridyl 1-thioglycosides substrates in synthesis of conjugates with uridine moiety. Part I. Acta Poloniae Pharmaceutica. 2012. V. 69. No. 6. P. 1259-1269.
Kuduk S.D., Di Pardo R.M., Bock M.G. Tetrabutylammonium Salt Induced Denitration of Nitropyridines: Synthesis of Fluoro-, Hydroxy-, and Methoxypyridines. Org. Lett. 2005. V. 7. P. 577-579.
Kumar N., Singh G., Khatoon S., Yadav A.K. Synthesis and antimicrobial activities of novel 10H-pyrido[3,2-b][1,4]benzo[b]thiazine ribofuranosides. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry. 2003. V. 42. P. 2015-2018.
Lach F., Koza P. Practical Way to Imidazo [4, 5-b] and [4, 5-c] Pyridine-2-ones via Cascade Ureidation/Palladium-Catalyzed Cyclization. ACS Combinatorial Science. 2012. V. 14. No. 9. P. 491-495.
Ling C.G., Lu S. Synthesis of new unsymmetric N,N′-dipyridylurea derivatives by selenium and selenium dioxide-catalyzed reductive carbonylation of substituted nitropyridines. Tetrahedron. 2003. V. 59. P. 8251-8256.
Murugan R. Pyridines: from lab to production. Chapter 4 - Substituent Modifications. Best Synthetic Methods. 2013. P. 375-411.
Fadli A. Pat. WO2011/69898 A1. Novel cationic aminopyridines, dye composition comprising a cationic aminopyridine, processes therefor and uses thereof / application. 03.12.2010; publ. 16.06.2011.
Sobhani-Nasab A. et al. Five-component domino synthesis of tetrahydropyridines using hexagonal PbCr x Fe12− x O19 as efficient magnetic nanocatalyst. Research on Chemical Intermediates. 2017. V. 43. No. 11. P. 6155-6165.
Tjosås F., Pettersen N.M., Fiksdahl A. α-(3-Pyridyl)malonates: preparation and synthetic applications. Tetrahedron. 2007. V. 63. P. 11893-11901.
Türker L., Variş S. A review of polycyclic aromatic energetic materials. Polycyclic Aromatic Compounds. 2009. V. 29. No. 4. P. 228-266.
Varvaresou A., Iakovou K. Derivatives of 5-Oxy-pyrido[2,3-b]quinoxaline-9-carboxylic Acid: A Tricyclic System Useful for the Synthesis of Potential Intercalators. J. Heterocyclic Chem. 2002. V. 39. P. 1173.
Vitaku E., Smith D. T., Njardarson J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. Journal of medicinal chemistry. 2014. V. 57. No. 24. P. 10257-10274.
Winkler M., Cakir B., Sander W. 3, 5-Pyridyne A Heterocyclic meta-Benzyne Derivative. Journal of the American Chemical Society. 2004. V. 126. No. 19. P. 6135-6149.
Zhang L. Y. et al. Synthetic optimization of TACOT-derived nitrogen-rich energetic compounds and reaction mechanism research. Synthetic Communications. 2021. V. 51. No. 18. P. 2808-2816.
Просмотров аннотации: 125 Загрузок PDF: 266
Copyright (c) 2023 Evgeniya V. Ivanova, Irina I. Surova, Maria B. Nikishina, Loik G. Mukhtorov, Irina V. Shahkeldyan, Yuri M. Atroshchenko
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.