МАЛЫЕ МОЛЕКУЛЫ В ТЕСТЕ ИНГИБИРОВАНИЯ БАКТЕРИАЛЬНОЙ ЛЮМИНЕСЦЕНЦИИ

  • Daniil E. Shoshin ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук https://orcid.org/0000-0002-5125-5981
  • Ksenia N. Atlanderova ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук https://orcid.org/0000-0002-5125-5981
  • Galimzhan K. Duskaev ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук https://orcid.org/0000-0002-9015-8367
  • Elena A. Sizova ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет https://orcid.org/0000-0003-3086-681X
Ключевые слова: фитохимические вещества, малые молекулы, кверцетин, 7-гидроксикумарин, ванилин, транс-коричный альдегид, биолюминесценция, Escherichia coli

Аннотация

Состояние вопроса. Отказ от антибиотиков в животноводстве побуждает к поиску новых более эффективных альтернатив, одной из которых являются фитохимические вещества – малые молекулы с выраженным биоактивным действием.

Материалы и методы. В статье рассмотрены физиологические свойства кверцетина, 7-гидроксикумарина, ванилина, транс-коричного альдегида, как действующих веществ из экстрактов некоторых растений. Проведена их биологическая аттестация в тесте ингибирования бактериальной люминесценции с применением рекомбинантного штамма Escherichia coli K12 TG1 в сравнении с антибиотическим препаратом тетрациклином.

Результаты. Установлены эффективные концентрации кверцетина, 7-гидроксикумарина, ванилина, транс-коричного альдегида, подавляющие 80, 50 и 20 % свечения в двух средах – H2O и рубцовой жидкости, составляющие, соответственно в первом случае 9,8×10-4; 4,9×10-4; 6,1×10-5 моль/л для транс-коричного альдегида; 3,9×10-3; 1,9×10-3; 4,9×10-4 моль/л для ванилина; 2,5×10-1; 1,2×10-1; 9,8×10-4 моль/л для кверцетин дигидрата; 1,6×10-2; 9,8×10-4; 4,9×10-4 моль/л для 7-гидроксикумарина.

Заключение. Транс-коричный альдегид, ванилин, 7-гидроксикумарин и кверцетин обладают выраженным бактерицидным или бактериостатическим действием и могут быть использованы как альтернатива антибиотических препаратов в кормлении сельскохозяйственных животных, включая крупный рогатый скот. В частности, в среде рубцового содержимого наблюдается синергетически усиливающееся подавление бактериального штамма.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Daniil E. Shoshin, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук

магистр, лаборант-исследователь центра «Нанотехнологии в сельском хозяйстве»

Ksenia N. Atlanderova, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук

кандидат биологических наук, научный сотрудник Испытательного центра

Galimzhan K. Duskaev, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук

доктор биологических наук, ведущий научный сотрудник отдела кормления с/х животных и технологии кормов, заместитель директора

Elena A. Sizova, ФГБНУ Федеральный научный центр биологических систем и агротехнологий Российской академии наук; Оренбургский государственный университет

доктор биологических наук, руководитель центра «Нанотехнологии в сельском хозяйстве»

Литература

Список литературы

Алешина Е. С. Методы биолюминесцентного тестирования : Методические указания к лабораторному практикуму / Е. С. Алешина, И. Ф. Каримов, Д. Г. Дерябин. Оренбург : Оренбургский государственный университет ЭБС АСВ, 2011. 56 с.

Рязанов В. А., Курилкина М. Я., Дускаев Г. К., Габидулин В. М. Фитобиотики как альтернатива антибиотикам в животноводстве // Животноводство и кормопроизводство, 2021, Т. 104, № 4, С. 108-123. https://doi.org/10.33284/2658-3135-104-4-10

Тимофеев Н. П. Фитобиотики в мировой практике: виды растений и действующие вещества, эффективность и ограничения, перспективы (обзор) // Аграрная наука Евро-Северо-Востока, 2021, Т. 22, № 6, С. 804-825. https://doi.org/10.30766/2072-9081.2021.22.6.804-825

Ademosun A. O., Oboh G., Bello F., Ayeni P. O. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities // Journal of evidence-based complementary & alternative medicine, 2016, v. 21, no. 4, pp. С. NP11-NP17. https://doi.org/10.1177/2156587215610032

Aljumaah M. R., Suliman G. M., Abdullatif A. A., Abudabos A. M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium // Poultry Science, 2020, v. 99, no. 11, pp. 5744-5751. https://doi.org/10.1016/j.psj.2020.07.033

Amalaradjou M. A. R., Narayanan A., Baskaran S. A., Venkitanarayanan K. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli // The Journal of urology, 2010, v. 184, no. 1. pp. 358-363, https://doi.org/10.1016/j.juro.2010.03.006

An D. G., Yang S. M., Kim B. G., Ahn J. H. Biosynthesis of two quercetin O-diglycosides in Escherichia coli // Journal of Industrial Microbiology and Biotechnology, 2016, v. 43, no. 6, pp. 841-849. https://doi.org/10.1007/s10295-016-1750-x

Arya S. S., Rookes J. E., Cahill D. M., Lenka S. K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule // Advances in traditional medicine, 2021, v. 21, no. 3, pp. 1-17. https://link.springer.com/article/10.1007/s13596-020-00531-w

Arya S. S., Sharma M. M., Rookes J. E., Cahill D. M., Lenka S. K. Vanilla modulates the activity of antibiotics and inhibits efflux pumps in drug-resistant Pseudomonas aeruginosa // Biologia, 2021, v. 76, no. 2, pp. 781-791. https://doi.org/10.2478/s11756-020-00617-5

Bang K. H., Lee D. W., Park H. M., Rhee Y. H. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde // Bioscience, biotechnology, and biochemistry, pp. 2000, v. 64, no. 5, pp. 1061-1063. https://doi.org/10.1271/bbb.64.1061

Beck H., Härter M., Haß B., Schmeck C., Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory // Drug Discovery Today, 2022. https://doi.org/10.1016/j.drudis.2022.02.015

Błaszczyk N., Rosiak A., Kałużna-Czaplińska J. The potential role of cinnamon in human health // Forests, 2021, v. 12, no. 5, pp. 648. https://doi.org/10.3390/f12050648

Chodkowska K. A., Abramowicz-Pindor P. A., Tuśnio A., Gawin K., Taciak M., Barszcz M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens // Animals, 2022, v. 12, no. 19, pp. 2625. https://doi.org/10.3390/ani12192625

Fitzgerald D. J., Stratford M., Gasson M. J., Ueckert J., Bos A., Narbad A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua // Journal of applied microbiology, 2004, v. 97, no. 1, pp. 104-113. https://doi.org/10.1111/j.1365-2672.2004.02275.x

Garg S. S., Gupta J., Sharma S., Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action // European Journal of Pharmaceutical Sciences, 2020, v. 152, pp. 105424. https://doi.org/10.1016/j.ejps.2020.105424

Jaisinghani R. N. Antibacterial properties of quercetin // Microbiology research, 2017, v. 8, no. 1, pp. 6877. https://doi.org/10.4081/mr.2017.6877

Kallio J., Jaakkola M., Mäki M., Kilpeläinen P., Virtanen V. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro // Planta medica, 2012, v. 78, no. 17, pp. 1824-1830. https://doi.org/10.1055/s-0032-1315388

Kanimozhi G., Prasad N. R., Ramachandran S., Pugalendi K. V. Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes // European journal of pharmacology, 2011, v. 672, no. 1-3, pp. 20-29. https://doi.org/10.1016/j.ejphar.2011.09.003

Kaşıkcı M. B., Bağdatlıoğlu N. Bioavailability of quercetin // Current research in nutrition and food science journal, 2016, no. 4, pp. 146-151. https://doi.org/10.12944/CRNFSJ.4.Special-Issue-October.20

Kiczorowska B., Samolińska W., Al-Yasiry A. R. M., Kiczorowski P., Winiarska-Mieczan A. The natural feed additives as immunostimulants in monogastric animal nutrition – a review // Annals of animal science, 2017, v. 17, no. 3, pp. 605-625. https://doi.org/10.1515/aoas-2016-0076

Kim H. O., Park S. W., Park H. D. Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot // Food Microbiology, 2004, v. 21, no. 1, pp. 105-110. https://doi.org/10.1016/S0740-0020(03)00010-8

Kim J. H., Kang M. J., Choi H. N., Jeong S. M., Lee Y. M., Kim J. I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus // Nutrition research and practice, 2011, v. 5, no. 2, pp. 107-111. https://doi.org/10.4162/nrp.2011.5.2.107

Kim J. H., Lee H. O., Cho Y. J., Kim J., Chun J., Choi J., Jung W. H. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans // PloS one, 2014, v. 9, no. 2, pp. e89122. https://doi.org/10.1371/journal.pone.0089122

Kobori M., Takahashi Y., Akimoto Y., Sakurai M., Matsunaga I., Nishimuro H., Ohnishi-Kameyama M. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice // Journal of Functional Foods, 2015, no. 15, pp. 551-560. https://doi.org/10.1016/j.jff.2015.04.006

Krivonogova A., Isaeva A., Chentsova A., Musikhina N., Petropavlovsky M. The influence of phytobiotic based on essential oils of Salvia sclarea, Mentha canadensis, Mentha piperita and Coriandrum sativum on pathogenic microorganisms of lactating cow udder // E3S Web of Conferences, 2021, v. 282, pp. 04013. https://doi.org/10.1051/e3sconf/202128204013

Krivonogova A., Isaeva A., Poryvaeva A., Chentsova A., Sharavyev P. Inhibitory effect of plant metabolites of Nigella sativa on conditionally pathogenic microflora of productive animals // E3S Web of Conferences, 2021, v. 282, pp. 04014. https://doi.org/10.1051/e3sconf/202128204014

Lee J. E., Jung M., Lee S. C., Huh M. J., Seo S. M., Park, I. K. Antibacterial mode of action of trans-cinnamaldehyde derived from cinnamon bark (Cinnamomum verum) essential oil against Agrobacterium tumefaciens // Pesticide biochemistry and physiology, 2020, v. 165, no. 104546. https://doi.org/10.1016/j.pestbp.2020.02.012

Lee J. H., Kim Y. G., Cho H. S., Ryu S. Y., Cho M. H., Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157: H7 // Phytomedicine, 2014, v. 21, no. 8-9, pp. 1037-1042. https://doi.org/10.1016/j.phymed.2014.04.008

Mann A., Nehra K., Rana J. S., Dahiya T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance // Current Research in Microbial Sciences, 2021, no. 2, pp. 100030. https://doi.org/10.1016/j.crmicr.2021.100030

Mazimba O., Majinda R. R., Modibedi C., Masesane I. B., Cencič A., Chingwaru W. Tylosema esculentum extractives and their bioactivity // Bioorganic & medicinal chemistry, 2011, v. 19, no. 17, pp. 5225-5230. https://doi.org/10.1016/j.bmc.2011.07.006

Miles S. L., McFarland M., Niles R. M. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease // Nutrition reviews, 2014, v. 72, no. 11, pp. 720-734. https://doi.org/10.1111/nure.12152

Mok N., Chan S. Y., Liu S. Y., Chua S. L. Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa // Food & function, 2020, v. 11, no. 7, pp. 6496-6508. https://pubs.rsc.org/en/content/articlelanding/2020/fo/d0fo00046a/unauth

Ngarmsak M., Delaquis P., Toivonen P., Ngarmsak T., Ooraikul B., Mazza G. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes // Journal of food protection, 2006, v. 69, no. 7, pp. 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724

Ojala T., Remes S., Haansuu P., Vuorela H., Hiltunen R., Haahtela K., Vuorela P. Antimicrobial activity of some coumarin containing herbal plants growing in Finland // Journal of ethnopharmacology, 2000, v. 73, no. 1-2, pp. 299-305. https://doi.org/10.1016/S0378-8741(00)00279-8

Ozgen S., Kilinc O. K., Selamoğlu Z. Antioxidant activity of quercetin: a mechanistic review // Turkish Journal of Agriculture-Food Science and Technology, 2016, v. 4, no. 12, pp. 1134-1138. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069

Parvez S., Venkataraman C., Mukherji S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals // Environment international, 2006, v. 32, no. 2, pp. 265-268. https://doi.org/10.1016/j.envint.2005.08.022

Pattrick C. A., Webb J. P., Green J., Chaudhuri R. R., Collins M. O., Kelly D. J. Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli // Msystems, 2019, v. 4, no. 4, pp. e00163-19. https://doi.org/10.1128/mSystems.00163-19

Qu S., Dai C., Shen Z., Tang Q., Wang H., Zhai B., Hao Z. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli // Frontiers in Microbiology, 2019, no. 10, pp. 2536. https://doi.org/10.3389/fmicb.2019.02536

Romero-Cortes T., Pérez España V. H., López Pérez P. A., Rodríguez-Jimenes G. D. C., Robles-Olvera V. J., Aparicio Burgos J. E., Cuervo-Parra J. A. Antifungal activity of vanilla juice and vanillin against Alternaria alternata // CyTA-Journal of Food, 2019, v. 17, no. 1, pp. 375-383. https://doi.org/10.1080/19476337.2019.1586776

Ruesga-Gutiérrez E., Ruvalcaba-Gómez J. M., Gómez-Godínez L. J., Villagrán Z., Gómez-Rodríguez V. M., Heredia-Nava D., Arteaga-Garibay R. I. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota // Microorganisms, 2022, v. 10, no. 1, pp. 117. https://doi.org/10.3390/microorganisms10010117

Salehi B., Machin L., Monzote L., Sharifi-Rad J., Ezzat S. M., Salem M. A., Cho W. C. Therapeutic potential of quercetin: new insights and perspectives for human health // Acs Omega, 2020, v. 5, no. 20, pp. 11849-11872. https://doi.org/10.1021/acsomega.0c01818

Shahverdi A. R., Monsef-Esfahani H. R., Tavasoli F., Zaheri A., Mirjani R. Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro // Journal of Food Science, 2007, v. 72, no. 1, pp. S055-S058. https://doi.org/10.1111/j.1750-3841.2006.00204.x

Singh R., Singh B., Singh S., Kumar N., Kumar S., Arora S. Umbelliferone – An antioxidant isolated from Acacia nilotica (L.) Willd. ex. Del // Food Chemistry, 2010, v. 120, no. 3, pp. 825-830. https://doi.org/10.1016/j.foodchem.2009.11.022

Sizova E., Miroshnikov S., Yausheva E., Kosyan D. Comparative characteristic of toxicity of nanoparticles using the test of bacterial bioluminescence // Biosciences Biotechnology Research Asia, 2015, v. 12, pp. 361-368. https://doi.org/10.1/bbra/2047

Sokół-Łętowska A., Oszmiański J., Wojdyło A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap // Food chemistry, 2007, v. 103, no. 3, pp. 853-859. https://doi.org/10.1016/j.foodchem.2006.09.036

Sytar O., Kosyan A., Taran N., Smetanska I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content // Gesunde Pflanzen, 2014, v. 66, no. 4, pp. 165-169. https://doi.org/10.1007/s10343-014-0331-z

Wang S., Yao J., Zhou B., Yang J., Chaudry M. T., Wang M., Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro // Journal of Food Protection, 2018, v. 81, no. 1, pp. 68-78. https://doi.org/10.4315/0362-028X.JFP-17-214

Windisch W., Kroismayr A. The effects of phytobiotics on performance and gut function in monogastrics // World nutrition forum: The future of animal nutrition, 2006, pp. 85-90. https://www.efeedlink.com/shared/pdfiles/Biomin-EffectOfPhytobioticsOnPerformance.pdf

Xu D., Hu M. J., Wang Y. Q., Cui Y. L. Antioxidant activities of quercetin and its complexes for medicinal application // Molecules, 2019, v. 24, no. 6, pp. 1123. https://doi.org/10.3390/molecules24061123

References

Aleshina E. S. Metody biolyuminestsentnogo testirovaniya : Metodicheskie ukazaniya k laboratornomu praktikumu [Methods of bioluminescent testing: Guidelines for laboratory workshop] / E. S. Aleshina, I. F. Karimov, D. G. Deryabin. Orenburg: Orenburg State University EBS ASV, 2011, 56 p.

Ryazanov V. A., Kurilkina M. Ya., Duskaev G. K., Gabidulin V. M. Zhivotnovodstvo i kormoproizvodstvo, 2021, vol. 104, no. 4, pp. 108-123. https://doi.org/10.33284/2658-3135-104-4-10

Timofeev N. P. Agrarnaya nauka Evro-Severo-Vostoka, 2021, vol. 22, no. 6, pp. 804-825. https://doi.org/10.30766/2072-9081.2021.22.6.804-825

Ademosun A. O., Oboh G., Bello F., Ayeni P. O. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. Journal of evidence-based complementary & alter-native medicine, 2016, v. 21, no. 4, pp. NP11-NP17. https://doi.org/10.1177/2156587215610032

Aljumaah M. R., Suliman G. M., Abdullatif A. A., Abudabos A. M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poultry Science, 2020, v. 99, no. 11, pp. 5744-5751. https://doi.org/10.1016/j.psj.2020.07.033

Amalaradjou M. A. R., Narayanan A., Baskaran S. A., Venkitanarayanan K. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. The Journal of urology, 2010, v. 184, no. 1. pp. 358-363, https://doi.org/10.1016/j.juro.2010.03.006

An D. G., Yang S. M., Kim B. G., Ahn J. H. Biosynthesis of two quercetin O-diglycosides in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 2016, v. 43, no. 6, pp. 841-849. https://doi.org/10.1007/s10295-016-1750-x

Arya S. S., Rookes J. E., Cahill D. M., Lenka S. K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Advances in traditional medicine, 2021, v. 21, no. 3, pp. 1-17. https://link.springer.com/article/10.1007/s13596-020-00531-w

Arya S. S., Sharma M. M., Rookes J. E., Cahill D. M., Lenka S. K. Vanilla modulates the activity of antibiotics and inhibits efflux pumps in drug-resistant Pseudomonas aeruginosa. Biologia, 2021, v. 76, no. 2, pp. 781-791. https://doi.org/10.2478/s11756-020-00617-5

Bang K. H., Lee D. W., Park H. M., Rhee Y. H. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Bioscience, biotechnology, and biochemistry, pp. 2000, v. 64, no. 5, pp. 1061-1063. https://doi.org/10.1271/bbb.64.1061

Beck H., Härter M., Haß B., Schmeck C., Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anni-versary of the Bayer Chemical Research Laboratory. Drug Discovery Today, 2022. https://doi.org/10.1016/j.drudis.2022.02.015

Błaszczyk N., Rosiak A., Kałużna-Czaplińska J. The potential role of cin-namon in human health. Forests, 2021, v. 12, no. 5, pp. 648. https://doi.org/10.3390/f12050648

Chodkowska K. A., Abramowicz-Pindor P. A., Tuśnio A., Gawin K., Taciak M., Barszcz M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals, 2022, v. 12, no. 19, pp. 2625. https://doi.org/10.3390/ani12192625

Fitzgerald D. J., Stratford M., Gasson M. J., Ueckert J., Bos A., Narbad A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of applied microbiology, 2004, v. 97, no. 1, pp. 104-113. https://doi.org/10.1111/j.1365-2672.2004.02275.x

Garg S. S., Gupta J., Sharma S., Sahu D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. European Journal of Pharmaceutical Sciences, 2020, v. 152, pp. 105424. https://doi.org/10.1016/j.ejps.2020.105424

Jaisinghani R. N. Antibacterial properties of quercetin. Microbiology re-search, 2017, v. 8, no. 1, pp. 6877. https://doi.org/10.4081/mr.2017.6877

Kallio J., Jaakkola M., Mäki M., Kilpeläinen P., Virtanen V. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta medica, 2012, v. 78, no. 17, pp. 1824-1830. https://doi.org/10.1055/s-0032-1315388

Kanimozhi G., Prasad N. R., Ramachandran S., Pugalendi K. V. Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes. European journal of pharmacology, 2011, v. 672, no. 1-3, pp. 20-29. https://doi.org/10.1016/j.ejphar.2011.09.003

Kaşıkcı M. B., Bağdatlıoğlu N. Bioavailability of quercetin. Current re-search in nutrition and food science journal, 2016, no. 4, pp. 146-151. https://doi.org/10.12944/CRNFSJ.4.Special-Issue-October.20

Kiczorowska B., Samolińska W., Al-Yasiry A. R. M., Kiczorowski P., Winiarska-Mieczan A. The natural feed additives as immunostimulants in monogas-tric animal nutrition – a review. Annals of animal science, 2017, v. 17, no. 3, pp. 605-625. https://doi.org/10.1515/aoas-2016-0076

Kim H. O., Park S. W., Park H. D. Inactivation of Escherichia coli O157: H7 by cinnamic aldehyde purified from Cinnamomum cassia shoot. Food Microbiology, 2004, v. 21, no. 1, pp. 105-110. https://doi.org/10.1016/S0740-0020(03)00010-8

Kim J. H., Kang M. J., Choi H. N., Jeong S. M., Lee Y. M., Kim J. I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutrition research and practice, 2011, v. 5, no. 2, pp. 107-111. https://doi.org/10.4162/nrp.2011.5.2.107

Kim J. H., Lee H. O., Cho Y. J., Kim J., Chun J., Choi J., Jung W. H. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans. PloS one, 2014, v. 9, no. 2, pp. e89122. https://doi.org/10.1371/journal.pone.0089122

Kobori M., Takahashi Y., Akimoto Y., Sakurai M., Matsunaga I., Nishi-muro H., Ohnishi-Kameyama M. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. Journal of Functional Foods, 2015, no. 15, pp. 551-560. https://doi.org/10.1016/j.jff.2015.04.006

Krivonogova A., Isaeva A., Chentsova A., Musikhina N., Petropavlovsky M. The influence of phytobiotic based on essential oils of Salvia sclarea, Mentha canadensis, Mentha piperita and Coriandrum sativum on pathogenic microorganisms of lactating cow udder. E3S Web of Conferences, 2021, v. 282, pp. 04013. https://doi.org/10.1051/e3sconf/202128204013

Krivonogova A., Isaeva A., Poryvaeva A., Chentsova A., Sharavyev P. Inhibitory effect of plant metabolites of Nigella sativa on conditionally pathogenic microflora of productive animals. E3S Web of Conferences, 2021, v. 282, pp. 04014. https://doi.org/10.1051/e3sconf/202128204014

Lee J. E., Jung M., Lee S. C., Huh M. J., Seo S. M., Park, I. K. Antibacterial mode of action of trans-cinnamaldehyde derived from cinnamon bark (Cinnamomum verum) essential oil against Agrobacterium tumefaciens. Pesticide biochemistry and physiology, 2020, v. 165, no. 104546. https://doi.org/10.1016/j.pestbp.2020.02.012

Lee J. H., Kim Y. G., Cho H. S., Ryu S. Y., Cho M. H., Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157: H7. Phytomedicine, 2014, v. 21, no. 8-9, pp. 1037-1042. https://doi.org/10.1016/j.phymed.2014.04.008

Mann A., Nehra K., Rana J. S., Dahiya T. Antibiotic resistance in agricul-ture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences, 2021, no. 2, pp. 100030. https://doi.org/10.1016/j.crmicr.2021.100030

Mazimba O., Majinda R. R., Modibedi C., Masesane I. B., Cencič A., Chingwaru W. Tylosema esculentum extractives and their bioactivity. Bioorganic & medicinal chemistry, 2011, v. 19, no. 17, pp. 5225-5230. https://doi.org/10.1016/j.bmc.2011.07.006

Miles S. L., McFarland M., Niles R. M. Molecular and physiological ac-tions of quercetin: need for clinical trials to assess its benefits in human disease. Nutrition reviews, 2014, v. 72, no. 11, pp. 720-734. https://doi.org/10.1111/nure.12152

32 Mok N., Chan S. Y., Liu S. Y., Chua S. L. Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa. Food & function, 2020, v. 11, no. 7, pp. 6496-6508. https://pubs.rsc.org/en/content/articlelanding/2020/fo/d0fo00046a/unauth

Ngarmsak M., Delaquis P., Toivonen P., Ngarmsak T., Ooraikul B., Maz-za G. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. Journal of food protection, 2006, v. 69, no. 7, pp. 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724

Ojala T., Remes S., Haansuu P., Vuorela H., Hiltunen R., Haahtela K., Vuorela P. Antimicrobial activity of some coumarin containing herbal plants grow-ing in Finland. Journal of ethnopharmacology, 2000, v. 73, no. 1-2, pp. 299-305. https://doi.org/10.1016/S0378-8741(00)00279-8

Ozgen S., Kilinc O. K., Selamoğlu Z. Antioxidant activity of quercetin: a mechanistic review. Turkish Journal of Agriculture-Food Science and Technology, 2016, v. 4, no. 12, pp. 1134-1138. https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069

Parvez S., Venkataraman C., Mukherji S. A review on advantages of im-plementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment international, 2006, v. 32, no. 2, pp. 265-268. https://doi.org/10.1016/j.envint.2005.08.022

Pattrick C. A., Webb J. P., Green J., Chaudhuri R. R., Collins M. O., Kelly D. J. Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli. Msystems, 2019, v. 4, no. 4, pp. e00163-19. https://doi.org/10.1128/mSystems.00163-19

Qu S., Dai C., Shen Z., Tang Q., Wang H., Zhai B., Hao Z. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli. Frontiers in Microbiology, 2019, no. 10, pp. 2536. https://doi.org/10.3389/fmicb.2019.02536

Romero-Cortes T., Pérez España V. H., López Pérez P. A., Rodríguez-Jimenes G. D. C., Robles-Olvera V. J., Aparicio Burgos J. E., Cuervo-Parra J. A. Antifungal activity of vanilla juice and vanillin against Alternaria alternate. Cy-TA-Journal of Food, 2019, v. 17, no. 1, pp. 375-383. https://doi.org/10.1080/19476337.2019.1586776

Ruesga-Gutiérrez E., Ruvalcaba-Gómez J. M., Gómez-Godínez L. J., Villagrán Z., Gómez-Rodríguez V. M., Heredia-Nava D., Arteaga-Garibay R. I. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota. Microorganisms, 2022, v. 10, no. 1, pp. 117. https://doi.org/10.3390/microorganisms10010117

Salehi B., Machin L., Monzote L., Sharifi-Rad J., Ezzat S. M., Salem M. A., Cho W. C. Therapeutic potential of quercetin: new insights and perspectives for human health. Acs Omega, 2020, v. 5, no. 20, pp. 11849-11872. https://doi.org/10.1021/acsomega.0c01818

Shahverdi A. R., Monsef-Esfahani H. R., Tavasoli F., Zaheri A., Mirjani R. Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro. Journal of Food Science, 2007, v. 72, no. 1, pp. S055-S058. https://doi.org/10.1111/j.1750-3841.2006.00204.x

Singh R., Singh B., Singh S., Kumar N., Kumar S., Arora S. Umbellifer-one – An antioxidant isolated from Acacia nilotica (L.) Willd. ex. Del. Food Chemistry, 2010, v. 120, no. 3, pp. 825-830. https://doi.org/10.1016/j.foodchem.2009.11.022

Sizova E., Miroshnikov S., Yausheva E., Kosyan D. Comparative characteristic of toxicity of nanoparticles using the test of bacterial bioluminescence. Biosciences Biotechnology Research Asia, 2015, v. 12, pp. 361-368. https://doi.org/10.1/bbra/2047

Sokół-Łętowska A., Oszmiański J., Wojdyło A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food chemistry, 2007, v. 103, no. 3, pp. 853-859. https://doi.org/10.1016/j.foodchem.2006.09.036

Sytar O., Kosyan A., Taran N., Smetanska I. Anthocyanin’s as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanzen, 2014, v. 66, no. 4, pp. 165-169. https://doi.org/10.1007/s10343-014-0331-z

Wang S., Yao J., Zhou B., Yang J., Chaudry M. T., Wang M., Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 2018, v. 81, no. 1, pp. 68-78. https://doi.org/10.4315/0362-028X.JFP-17-214

Windisch W., Kroismayr A. The effects of phytobiotics on performance and gut function in monogastrics. World nutrition forum: The future of animal nutrition, 2006, pp. 85-90. https://www.efeedlink.com/shared/pdfiles/Biomin-EffectOfPhytobioticsOnPerformance.pdf

Xu D., Hu M. J., Wang Y. Q., Cui Y. L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, v. 24, no. 6, pp. 1123. https://doi.org/10.3390/molecules24061123


Просмотров аннотации: 88
Загрузок PDF: 68
Опубликован
2023-08-30
Как цитировать
Shoshin, D., Atlanderova, K., Duskaev, G., & Sizova, E. (2023). МАЛЫЕ МОЛЕКУЛЫ В ТЕСТЕ ИНГИБИРОВАНИЯ БАКТЕРИАЛЬНОЙ ЛЮМИНЕСЦЕНЦИИ. Siberian Journal of Life Sciences and Agriculture, 15(4), 29-55. https://doi.org/10.12731/2658-6649-2023-15-4-29-55
Раздел
Биологические исследования