ФИЗИЧЕСКИЕ ЭУСТРЕССОРЫ КАК ПОТЕНЦИАЛЬНЫЕ ИНСТРУМЕНТЫ ДЛЯ ПОВЫШЕНИЯ СТРЕССОУСТОЙЧИВОСТИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР (ОБЗОР)

  • Oleg N. Bakhchevnikov Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской» https://orcid.org/0000-0002-3362-5627
  • Sergey V. Braginets Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» https://orcid.org/0000-0001-7137-5692
  • Nina S. Kravchenko Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской» https://orcid.org/0000-0003-3388-1548
  • Viktor I. Pakhomov Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет» https://orcid.org/0000-0002-8715-0655
Ключевые слова: семена, растения, предпосевная обработка, стресс, эустресс, память на стресс, физический эустрессор, эпигеном, фенотип, селекция

Аннотация

Обоснование. Процессы, происходящие в растениях и их семенах при стрессовых воздействиях, а также защитные механизмы, используемые растениями при стрессе, мало изучены, что не позволяет использовать их для повышения урожайности.

Цель. Обзор и анализ научных публикаций, посвященных феномену приобретенной растениями в результате действия физического эустрессора на их семена «памяти» на стресс, и возможному применению этого явления в растениеводстве и селекции сельскохозяйственных культур.

Материалы и методы. Выполнен обзор научной литературы по теме исследования за период 2016-2023 гг. Выполнение исследования состояло из этапов: поиск научной литературы, ее оценка и отбор, синтез данных и их анализ.

Результаты. Использование горметических эффектов физических агентов для стимулирования прорастания семян сельскохозяйственных культур является эффективным. Реакция на абиотические стрессы может быть «натренирована» праймингом таким образом, что растение приобретает способность лучше переносить последующее воздействие стресса. Были найдены доказательства формирования краткосрочной  и трансгенерационной памяти после прайминга растений. Установлен эпигенетический механизм формирования долгосрочной стрессовой памяти у растений в результате действия физического эустрессора. Эустрессор индуцирует специфические эпигенетические метки, связанные с адаптацией к окружающей среде, формируя новый стрессоустойчивый фенотип растения. Физические эустрессоры обладают потенциалом для придания сельскохозяйственным культурам устойчивости к стрессам путем усиления фенотипических характеристик, предотвращающих потери урожая.

Заключение. Обработка семян физическими эустрессорами формирует у растений устойчивость к абиотическим стрессам и память на них,  но научные данные по этому вопросу являются неполными и отрывочными. На сегодняшний день понимание и применение стрессовой памяти в целях селекции ограничено, но она имеет большой потенциал для создания новых сортов сельскохозяйственных культур.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Oleg N. Bakhchevnikov, Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»

канд. техн. наук, старший научный сотрудник 

Sergey V. Braginets, Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет»

д-р техн. наук, ведущий научный сотрудник 

Nina S. Kravchenko, Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»

канд. биол. наук, старший научный сотрудник 

Viktor I. Pakhomov, Федеральное государственное бюджетное научное учреждение «Аграрный научный центр «Донской»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Донской государственный технический университет»

д-р техн. наук, член-корреспондент РАН, директор 

Литература

Araujo S.D.S., Paparella S., Dondi D., et al. Physical methods for seed invigoration: ad-vantages and challenges in seed technology. Frontiers in Plant Science, 2016, vol. 7, pp. 646. https://doi.org/10.3389/fpls.2016.00646

Asensi-Fabado M.A., Amtmann A., Perrella G. Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2017, vol. 1860, no. 1, pp. 106-122. https://doi.org/10.1016/j.bbagrm.2016.07.015

Avramova Z. Defence-related priming and responses to recurring drought: two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. Plant, Cell & Environment, 2019, vol. 42, no. 3, pp. 983-997. https://doi.org/10.1111/pce.13458

Baby S.M., Narayanaswamy G.K., Anand A. Superoxide radical production and performance index of Photosystem II in leaves from magnetoprimed soybean seeds. Plant Signaling & Be-havior, 2011, vol. 6, no.11, pp. 1635-1637. https://doi.org/10.4161/psb.6.11.17720

Badridze G., Kacharava N., Chkhubianishvili E., Rapava L., Kikvidze M., Chanishvili S., Chigladze L. Effect of UV radiation and artificial acid rain on productivity of wheat. Russian Journal of Ecology, 2016, vol. 47, pp. 158-166. https://doi.org/10.1134/S106741361602003X

Baenas N., García-Viguera C., Moreno D.A. Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 2014, vol. 19, no. 9, pp. 13541-13563. https://doi.org/10.3390/molecules190913541

Balmer A., Pastor V., Gamir J., Flors V., Mauch-Mani B. The ‘prime-ome’: towards a holistic approach to priming. Trends in Plant Science, 2015, vol. 20, no. 7, pp. 443-452. https://doi.org/10.1016/j.tplants.2015.04.002

Bera K., Dutta P., Sadhukhan S. Seed priming with non-ionizing physical agents: Plant re-sponses and underlying physiological mechanisms. Plant Cell Reports, 2022, vol. 41, no. 1, pp. 53-73. https://doi.org/10.1007/s00299-021-02798-y

Bilalis D.J., Katsenios N., Efthimiadou A., Karkanis A. Pulsed electromagnetic field: an or-ganic compatible method to promote plant growth and yield in two corn types. Electromag-netic Biology and Medicine, 2012, vol. 31, no. 4, pp. 333-343. https://doi.org/10.3109/15368378.2012.661699

Bhardwaj J., Anand A., Nagarajan S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiology and Biochemistry, 2012, vol. 57, pp. 67-73. https://doi.org/10.1016/j.plaphy.2012.05.008

Brzezinka K., Altmann S., Czesnick H., Nicolas P., Gorka M., Benke E., et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife, 2016, vol. 5, pp. e17061. https://doi.org/10.7554/eLife.17061

Chang Y.N., Zhu C., Jiang J., Zhang H., Zhu J.K., Duan C.G. Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 2020, vol. 62, no. 5, pp. 563-580. https://doi.org/10.1111/jipb.12901

Cong W., Miao Y., Xu L. et al. Transgenerational memory of gene expression changes in-duced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biology, 2019, vol. 19, no. 1, pp. 1-14. https://doi.org/10.1186/s12870-019-1887-7

Conley A.B., Jordan I.K. Cell type-specific termination of transcription by transposable ele-ment sequences. Mobile DNA, 2012, vol. 3, pp. 1-13. https://doi.org/10.1186/1759-8753-3-15

Crisp P.A., Ganguly D., Eichten S.R., Borevitz J.O., Pogson B.J. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Science Ad-vances, 2016, vol. 2, no. 2, pp. e1501340. https://doi.org/10.1126/sciadv.1501340

De Gara L., de Pinto M.C., Moliterni V.M., D’Egidio M.G. Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany, 2003, vol. 54, no. 381, pp. 249-258. https://doi.org/10.1093/jxb/erg021

Deleris A., Halter T., Navarro L. (2016) DNA methylation and demethylation in plant im-munity. Annual Review of Phytopathology, 2016, vol. 54, pp. 579-603. https://doi.org/10.1146/annurev-phyto-080615-100308

Erofeeva E.A. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. Science of the Total Environment, 2022, vol. 804, pp. 150059. https://doi.org/10.1016/j.scitotenv.2021.150059

Faralli M., Lektemur C., Rosellini D., Gürel F. Effects of heat shock and salinity on barley growth and stress-related gene transcription. Biologia Plantarum, 2015, vol. 59, pp. 537-546. https://doi.org/10.1007/s10535-015-0518-x

Farooq M., Usman M., Nadeem F., ur Rehman H., Wahid A., Basra S.M., Siddique K.H. Seed priming in field crops: potential benefits, adoption and challenges. Crop and Pasture Science, 2019, vol. 70, no. 9, pp. 731-771. https://doi.org/10.1071/CP18604

Fortes A.M., Gallusci P. Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Frontiers in Plant Science, 2017, vol. 8, pp. 82. https://doi.org/10.3389/fpls.2017.00082

Friedrich T., Faivre L., Baurle I., Schubert D. Chromatin-based mechanisms of temperature memory in plants. Plant, Cell & Environment, 2019, vol. 42, no. 3, pp. 762-770. https://doi.org/10.1111/pce.13373

Friedrich T., Oberkofler V., Trindade I., Altmann S., Brzezinka K., Lämke J., et al. Heter-omeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidop-sis. Nature Communications, 2021, vol. 12, no. 1, pp. 3426. https://doi.org/10.1038/s41467-021-23786-6

Galviz Y.C., Ribeiro R.V., Souza G.M. Yes, plants do have memory. Theoretical and Exper-imental Plant Physiology, 2020, vol. 32, no. 3, pp. 195-202. https://doi.org/10.1007/s40626-020-00181-y

Garai S., Sopory S. K. Memory of plants: present understanding. The Nucleus, 2023, vol. 66, pp. 47-51. https://doi.org/10.1007/s13237-022-00399-y

Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: a landscape takes shape. Cell, 2007, vol. 128, no. 4, pp. 635-638. https://doi.org/10.1016/j.cell.2007.02.006

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aer-obic life. Plant Physiology, 2006, vol. 141, no. 2, pp. 312-322. https://doi.org/10.1104/pp.106.077073

Hepworth J., Antoniou-Kourounioti R.L., Bloomer R.H., Selga C., Berggren K., Cox D., et al. Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nature Communica-tions, 2018, vol. 9, no. 1, pp. 639. https://doi.org/10.1038/s41467-018-03065-7

Hideg E., Jansen M.A., Strid A. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Science, 2013, vol. 18, no. 2, pp. 107-115. https://doi.org/10.1016/j.tplants.2012.09.003

Hossain M.A., Li Z.G., Hoque T.S., Burritt D.J., Fujita M., Munné-Bosch S. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma, 2018, vol. 255, pp. 399-412. https://doi.org/10.1007/s00709-017-1150-8

Hussain S., Khan F., Cao W., Wu L., Geng M. Seed priming alters the production and detoxi-fication of reactive oxygen intermediates in rice seedlings grown under sub-optimal tempera-ture and nutrient supply. Frontiers in Plant Science, 2016, vol. 7, pp. 439. https://doi.org/10.3389/fpls.2016.00439

Kaciene G., Milce J.Z.E., Juknys R. Role of oxidative stress on growth responses of spring barley exposed to different environmental stressors. Journal of Plant Ecology, 2015, vol. 8, no. 6, pp. 605-616. https://doi.org/10.1093/jpe/rtv026

Kornarzyński K., Dziwulska-Hunek A., Kornarzyńska-Gregorowicz A., Sujak A. Effect of electromagnetic stimulation of amaranth seeds of different initial moisture on the germination parameters and photosynthetic pigments content. Scientific Reports, 2018, vol. 8, no. 1, pp. 14023. https://doi.org/10.1038/s41598-018-32305-5

Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. What is stress? Concepts, definitions and applications in seed science. New Phytologist, 2010, vol. 188, no. 3, pp. 655-673. https://doi.org/10.1111/j.1469-8137.2010.03461.x

Kushwaha A.K., Khan A., Sopory S.K., Sanan-Mishra N. Priming by high temperature stress induces microRNA regulated heat shock modules indicating their involvement in thermoprim-ing response in rice. Life, 2021, vol. 11, no. 4, pp. 291. https://doi.org/10.3390/life11040291

Lämke J., Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress ad-aptation and stress memory in plants. Genome Biology, 2017, vol. 18, pp. 124. https://doi.org/10.1186/s13059-017-1263-6

Li X., Cai J., Liu F., Dai T., Cao W., Jiang D. Physiological, proteomic and transcriptional responses of wheat to combination of drought or waterlogging with late spring low tempera-ture. Functional Plant Biology, 2014, vol. 41, no. 7, pp. 690-703. https://doi.org/10.1071/FP13306

Li Z-G., Xu Y., Bai L-K., Zhang S-Y., Wang Y. Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxifica-tion, and osmoregulation systems. Protoplasma, 2019, vol. 256, pp. 471-490. https://doi.org/10.1007/s00709-018-1311-4

Liang C., Zheng G., Li W., Wang Y., Hu B., Wang H., et al. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 2015, vol. 59, no. 1, pp. 91-101. https://doi.org/10.1111/jpi.12243

Lichtenthaler H.K. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 1996, vol. 148, no. 1-2, pp. 4-14. https://doi.org/10.1016/S0176-1617(96)80287-2

Ling Y., Serrano N., Gao G., Atia M., Mokhtar M., et al. Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany, 2018, vol. 69, no. 10, pp. 2659-2675. https://doi.org/10.1093/jxb/ery062

Liu H., Able A.J., Able J.A. Priming crops for the future: Rewiring stress memory. Trends in Plant Science, 2022, vol. 27, no. 7, pp. 699-716. https://doi.org/10.1016/j.tplants.2021.11.015

Liu X., Quan W., Bartels D. Stress memory responses and seed priming correlate with drought tolerance in plants: An overview. Planta, 2022, vol. 255, no. 2, pp. 45. https://doi.org/10.1007/s00425-022-03828-z

Locato V., Cimini S., De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. Journal of Experimental Botany, 2018, vol. 69, no. 14, pp. 3373-3391. https://doi.org/10.1093/jxb/ery168

Lukić N., Kukavica B., Davidović-Plavšić B., Hasanagić D., Walter J. Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environmental and Exper-imental Botany, 2020, vol. 178, pp. 104166. https://doi.org/10.1016/j.envexpbot.2020.104166

Luna E., Bruce T.J.A., Roberts M.R. et al. Next-generation systemic acquired resistance. Plant Physiology, 2012, vol. 158, no. 2, pp. 844-853. https://doi.org/10.1104/pp.111.187468

Michmizos D., Hilioti Z. A roadmap towards a functional paradigm for learning & memory in plants. Journal of Plant Physiology, 2019, vol. 232, pp. 209-215. https://doi.org/10.1016/j.jplph.2018.11.002

Magno Massuia de Almeida L., Avice J.C., Morvan-Bertrand A., et al. High temperature pat-terns at the onset of seed maturation determine seed yield and quality in oilseed rape (Brassi-ca napus L.) in relation to sulphur nutrition. Environmental and Experimental Botany, 2021, vol. 185, pp. 104400. https://doi.org/10.1016/j.envexpbot.2021.104400

Noble L., Dhankher O.P., Puthur J.T. Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans‐generational memory. Physio-logia Plantarum, 2023, vol. 175, no. 2, pp. e13881. https://doi.org/10.1111/ppl.13881

Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems, 2015, vol. 37, pp. 879-910. https://doi.org/10.17705/1cais.03743

Paparella S., Araújo S.S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. Seed priming: state of the art and new perspectives. Plant Cell Reports, 2015, vol. 34, pp. 1281-1293. https://doi.org/10.1007/s00299-015-1784-y

Parejo-Farnés C., Aparicio A., Albaladejo R.G. An approach to the ecological epigenetics in plants. Ecosistemas, 2019, vol. 28, no. 1, pp. 69-74. https://doi.org/10.7818/ECOS.1605

Pastor V., Luna E., Mauch-Mani B. et al. Primed plants do not forget. Environmental and Ex-perimental Botany, 2013, vol. 94, pp. 46-56. https://doi.org/10.1016/j.envexpbot.2012.02.013

Perrone A., Martinelli F. Plant stress biology in epigenomic era. Plant Science, 2020, vol. 294, pp. 110376. https://doi.org/10.1016/j.plantsci.2019.110376

Racette K., Rowland D., Tillman B. et al. Transgenerational stress memory in seed and seed-ling vigor of peanut (Arachis hypogaea L.) varies by genotype. Environmental and Experi-mental Botany, 2019, vol. 162, pp. 541-549. https://doi.org/10.1016/j.envexpbot.2019.03.006

Radhakrishnan R. (2019) Magnetic field regulates plant functions, growth and enhances toler-ance against environmental stresses. Physiology and Molecular Biology of Plants, vol. 25, no. 5, pp. 1107-1119. https://doi.org/10.1007/s12298-019-00699-9

Ramírez-Carrasco G., Martínez-Aguilar K., Alvarez-Venegas R. Transgenerational defense priming for crop protection against plant pathogens: a hypothesis. Frontiers in Plant Science, 2017, vol. 8, pp. 696. https://doi.org/10.3389/fpls.2017.00696

Reza Rahavi S.M., Kovalchuk I. (2013) Transgenerational changes in Arabidopsis thaliana in response to UV-C, heat and cold. Biocatalysis and Agricultural Biotechnology, 2013, vol. 2, no. 3, pp. 226-233. https://doi.org/10.1016/j.bcab.2013.05.001

Romero-Galindo R., Hernández-Aguilar C., Dominguez-Pacheco A., Godina-Nava J.J., Tsonchev R.I. Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review. International Agrophysics, 2022, vol. 35, no. 4, pp. 389-410. https://doi.org/10.31545/intagr/144951

Savvides A., Ali S., Tester M., Fotopoulos V. Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 2016, vol. 21, no. 4, pp. 329-340. https://doi.org/10.1016/j.tplants.2015.11.003

Slaughter A., Daniel X., Flors V. et al. Descendants of primed arabidopsis plants exhibit re-sistance to biotic stress. Plant Physiology, 2012, vol. 158, no. 2, pp. 835-843. https://doi.org/10.1104/pp.111.191593

Srivastava A.K., Suresh Kumar J., Suprasanna P. Seed ‘primeomics’: plants memorize their germination under stress. Biological Reviews, 2021, vol. 96, no. 5, pp. 1723-1743. https://doi.org/10.1111/brv.12722

Teklić T., Parađiković N., Špoljarević M. et al. (2021) Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, vol. 178, no. 2, pp. 169-191. https://doi.org/10.1111/aab.12651

Tirnaz S., Batley J. Epigenetics: potentials and challenges in crop breeding. Molecular Plant, 2019, vol. 12, no. 10, pp. 1309-1311. https://doi.org/10.1016/j.molp.2019.09.006

Thellier M., Lüttge U., Norris V., Ripoll C. Plant accommodation to their environment: the role of specific forms of memory. In: Memory and Learning in Plants. Springer, Cham. 2018, pp. 131-137. https://doi.org/10.1007/978-3-319-75596-0_7

Thomas T.D., Dinakar C., Puthur J.T. Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: Priming imprints and cross-tolerance. Plant Physiology and Biochemistry, 2020, vol. 147, pp. 21-30. https://doi.org/10.1016/j.plaphy.2019.12.002

Torraco R.J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review, 2016, vol. 15, no. 4, pp. 404-428. https://doi.org/10.1177/1534484316671606

Tricker P.J. Transgenerational inheritance or resetting of stress-induced epigenetic modifica-tions: two sides of the same coin. Frontiers in Plant Science, 2015, vol. 6, pp. 699. https://doi.org/10.3389/fpls.2015.00699

Vashisth A., Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 2010, vol. 167, no. 2, pp. 149-156. https://doi.org/10.1016/j.jplph.2009.08.011

Vázquez-Hernández M.C., Parola-Contreras I., Montoya-Gómez L.M., Torres-Pacheco I., Schwarz D., Guevara-González R.G. Eustressors: Chemical and physical stress factors used to enhance vegetables production. Scientia Horticulturae, 2019, vol. 250, pp. 223-229. https://doi.org/10.1016/j.scienta.2019.02.053

Vian A., Roux D., Girard S., et al. Microwave irradiation affects gene expression in plants. Plant Signaling & Behavior, 2006, vol. 1, no. 2, pp. 67-70. https://doi.org/10.4161/psb.1.2.2434

Villagómez-Aranda A.L., Feregrino-Pérez A.A., García-Ortega L.F., González-Chavira M.M., Torres-Pacheco I., Guevara-González R.G. Activating stress memory: Eustressors as potential tools for plant breeding. Plant Cell Reports, 2022, vol. 41, no. 7, pp. 1481-1498. https://doi.org/10.1007/s00299-022-02858-x

Volkova P.Y., Bondarenko E.V., Kazakova E.A. Radiation hormesis in plants. Current Opin-ion in Toxicology, 2022, vol. 30, pp. 100334. https://doi.org/10.1016/j.cotox.2022.02.007

Wang X., Mao Z., Zhang J., Hemat M., Huang M., Cai J., et al. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2019, vol. 166, pp. 103804. https://doi.org/10.1016/j.envexpbot.2019.103804

Wei W., Li Q-T., Chu Y-N., Reiter R.J., et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, vol. 66, no. 3, pp. 695-707. https://doi.org/10.1093/jxb/eru392

Weinhold A. Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Reports, 2018, vol. 37, pp. 3-9. https://doi.org/10.1007/s00299-017-2216-y

Wibowo A., Becker C., Marconi G., Durr J., Price J., Hagmann J., et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife, 2016, vol. 5, pp. e13546. https://doi.org/10.7554/eLife.13546


Просмотров аннотации: 76
Загрузок PDF: 38
Опубликован
2023-12-29
Как цитировать
Bakhchevnikov, O., Braginets, S., Kravchenko, N., & Pakhomov, V. (2023). ФИЗИЧЕСКИЕ ЭУСТРЕССОРЫ КАК ПОТЕНЦИАЛЬНЫЕ ИНСТРУМЕНТЫ ДЛЯ ПОВЫШЕНИЯ СТРЕССОУСТОЙЧИВОСТИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР (ОБЗОР). Siberian Journal of Life Sciences and Agriculture, 15(6), 360-386. https://doi.org/10.12731/2658-6649-2023-15-6-998
Раздел
Научные обзоры и сообщения