ПОВЕДЕНИЕ ХЛЕБОПЕКАРНЫХ И ПИВНЫХ ДРОЖЖЕЙ В ТЕХНОЛОГИЧЕСКИХ УСЛОВИЯХ ПРИ ИСПОЛЬЗОВАНИИ ЭЛЕКТРОХИМИЧЕСКИ АКТИВИРОВАННОГО ВОДНОГО РАСТВОРА

  • Alexander G. Pogorelov Институт теоретической и экспериментальной биофизики Российской академии наук https://orcid.org/0000-0002-8267-9496
  • Larisa G. Ipatova Институт теоретической и экспериментальной биофизики Российской академии наук https://orcid.org/0000-0001-7354-7072
  • Artem I. Panait Институт теоретической и экспериментальной биофизики Российской академии наук https://orcid.org/0000-0002-2737-303X
  • Maria A. Pogorelova Институт теоретической и экспериментальной биофизики Российской академии наук https://orcid.org/0000-0003-3671-6150
  • Anna A. Stankevich Институт теоретической и экспериментальной биофизики Российской академии наук https://orcid.org/0000-0003-4220-8355
  • Oleg A. Suvorov Институт теоретической и экспериментальной биофизики Российской академии наук; Российский биотехнологический университет (РОСБИОТЕХ) https://orcid.org/0000-0003-2100-0918
Ключевые слова: анолит, католит, дрожжи, брожение, опара, сусло

Аннотация

Обоснование. Актуальной задачей в пищевой промышленности является интенсификация технологических процессов. Применение фракций электрохимически активированного водного раствора (ЭХАР), обладающих высокой физико-химической активностью, позволяет ускорить биохимические реакции.

Цель – показать влияние на рост и функциональную активность дрожжей фракций ЭХАР, на которых были приготовлены опара и пивное сусло.

Методы исследования: общепринятые методики оценки качества опары, сусла, сканирующая электронная микроскопия ультраструктуры поверхности дрожжевых клеток.

Результаты. В образцах на католите отмечали повышение титра клеток (в жидкой опаре на 71%, в густой опаре – в 2,7 раза), максимальную долю почкующихся клеток (~22%) и минимальное количество мертвых клеток (~3,5%), а также увеличение подъемной силы на ~21% по сравнению с контрольным образцом. Применение католита обеспечило более глубокое сбраживание пивного сусла и стимулировало бродильную активность клеток. В сусле на анолите снижалась бродильная активность дрожжей, медленнее росла биомасса и увеличивалась доля мертвых клеток. На поверхности клеток наблюдаются множественные тонкие трещины, свидетельствующие о повреждении клеточной стенки. Выявленные нарушения целостности клетки согласуются с описанными выше данными об угнетении развития дрожжевых клеток в пивном сусле на основе анолита.

Заключение. Введение католита в рецептуру позволяет модифицировать способ приготовления опары в технологии производства хлеба, реактивировать сухие дрожжи перед их использованием, восстанавливать активность дрожжей после их длительного хранения. Выявленные закономерности действия фракций ЭХАР на подъемную силу дрожжей в опаре и на экстрактивность сусла, могут быть использованы для безреагентного регулирования брожения.

Информация о спонсорстве. Исследование выполнено за счет гранта Российского научного фонда № 20-16-00019, https://rscf.ru/project/20-16-00019/

EDN: YELFKB

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Alexander G. Pogorelov, Институт теоретической и экспериментальной биофизики Российской академии наук

доктор биол. наук, профессор, зав. лабораторией функциональной микроскопии биоструктур

Larisa G. Ipatova, Институт теоретической и экспериментальной биофизики Российской академии наук

Dr. Sc. (Ing.)

Artem I. Panait, Институт теоретической и экспериментальной биофизики Российской академии наук

м.н.с. лаборатории функциональной микроскопии биоструктур

Maria A. Pogorelova, Институт теоретической и экспериментальной биофизики Российской академии наук

кандидат биол. наук, с.н.с. лаборатории функциональной микроскопии биоструктур

Anna A. Stankevich, Институт теоретической и экспериментальной биофизики Российской академии наук

кандидат биол. наук, с.н.с. лаборатории функциональной микроскопии биоструктур

Oleg A. Suvorov, Институт теоретической и экспериментальной биофизики Российской академии наук; Российский биотехнологический университет (РОСБИОТЕХ)

доктор техн. наук, доцент, в.н.с. лаборатории функциональной микроскопии биоструктур; профессор кафедры индустрии питания, гостиничного бизнеса и сервиса

Литература

Список литературы

Bakhir V.M. Universal electrochemical technology for environmental protection / V.M. Bakhir, A.G. Pogorelov // International journal of pharmaceutical research and allied sciences. 2018. Vol. 7(1). P. 41–57.

Ding T. Electrolyzed water in food: fundamentals and applications / T. Ding, D. H. Oh, D. Liu. Singapore: Springer, 2019. 274 p. https://doi.org/10.1007/978-981-13-3807-6

Johansson B. Functional water-in promotion of health beneficial effects and prevention of disease // Internal medicine review. 2017. Vol. 3(2). Article 321. http://dx.doi.org/10.18103/imr.v3i2.321

Ramírez Orejel, J. C. Applications of electrolyzed water as a sanitizer in the food and animal-by products industry / J. C. Ramírez Orejel, J. A. Cano-Buendía // Processes. 2020. Vol. 8(5). Article 534. https://doi.org/10.3390/pr8050534

Ignatov I. Preparation of electrochemically activated water solutions (catholyte / anolyte) and studying their physical-chemical properties / I. Ignatov, G. Gluhchev, S. Karadzhov, G. Miloshev, N. Ivanov, O. Mosin // Journal of medicine, physiology and biophysics. 2015. Vol. 13. P. 1-21.

Chen B.-K. Electrolyzed water and its pharmacological activities: a mini-review / B.-K. Chen, C.-K. Wang // Molecules. 2022. Vol. 27 (4). Article 1222. https://doi.org/10.3390/molecules27041222

Ignatov I. Dynamic nano clusters of water on waters catholyte and anolyte: electrolysis with nano membranes / I. Ignatov, G. Gluhchev, S. Karadzhov, I. Yaneva, N. Valcheva, G. Dinkov et al. // Physical science international journal. 2020. Vol. 24(1). P. 46–54. http://dx.doi.org/10.9734/psij/2020/v24i130173

Ignatov I. Structuring of water clusters depending on the energy of hydrogen bonds in electrochemically activated waters Anolyte and Catholyte / I. Ignatov, G. Gluhchev, N. Neshev, D. Mehandjiev // Bulgarian chemical communications. 2021. Vol. 53(2). P. 234-239. https://doi.org/10.34049/bcc.53.2.5376

Jiménez-Pichardo R. Innovative control of biofilms on stainless steel surfaces using electrolyzed water in the dairy industry / R. Jiménez-Pichardo, I. Hernández-Martínez, C. Regalado-González, J. Santos-Cruz, Y. Meas-Vong, M.d.C. Wacher-Rodarte, J. Carrillo-Reyes, I. Sánchez-Ortega, B.E. García-Almendárez // Foods. 2021. Vol. 10(1). Article 103. https://doi.org/10.3390/foods10010103

Rebezov M. Application of electrolyzed water in the food industry: a review / M. Rebezov, K. Saeed, A. Khaliq, S.J.U. Rahman, N. Sameed, A. Semenova, M. Khayrullin, A. Dydykin, Y. Abramov, M. Thiruvengadam, M.A. Shariati, S.P. Bangar, J.M. Lorenzo // Applied sciences. 2022. Vol. 12(13). Article 6639. https://doi.org/10.3390/app12136639

Yan P. Stability and Antibiofilm Efficiency of Slightly Acidic Electrolyzed Water Against Mixed-Species of Listeria monocytogenes and Staphylococcus aureus / P. Yan, R. Chelliah, K.-h. Jo, V. Selvakumar, X. Chen, H.-y. Jo, D.H. Oh // Frontiers in microbiology. 2022. Vol. 13. Article 865918. https://doi.org/10.3389/fmicb.2022.865918

Vassileva P. Results from the research of water catholyte with nascent (atomic) hydrogen / P. Vassileva, D. Voykova, I. Ignatov, S. Karadzhov, S. Gluhchev, N. Ivanov, D. Mehandjiev // Journal of medicine, physiology and biophysics. 2019. Vol. 52. P. 7-11. https://doi.org/10.7176/JMPB/52-02.

Храпенков С.Н. Применение ЭХА растворов и ферментных препаратов для экстракции хмеля / С.Н. Храпенков, М.В. Гернет, Д.А. Свиридов, К.В. Кобелев, В.М. Бахир // Пиво и напитки. 2004. № 2. С. 32–33.

Гернет М.В. Влияние физико-химических методов обработки растительного сырья на извлечение фенольных соединений / М.В. Гернет, И.Н. Грибкова // Пищевая промышленность. 2020. № 7. С. 44–47. https://doi.org/10.24411/0235-2486-2020-10075

Gorbacheva M.V. Electrochemical activation as a fat rendering technology / M.V. Gorbacheva, V.E. Tarasov, S.A. Kalmanovich, A.I. Sapozhnikova // Foods and raw materials. 2021. Vol. 9(1). P. 32–42. https://doi.org/10.21603/2308-4057-2021-1-32-42

Kobelev K.V. Study of brewer’s spent grain environmentally friendly processing ways / K.V. Kobelev, I.N. Gribkova, L.N. Kharlamova, A.V. Danilyan, M.A. Zakharov, I.V. Lazareva, V.I. Kozlov, O.A. Borisenko // Molecules. 2023. Vol. 28. Article 4553. https://doi.org/10.3390/molecules28114553

Cayemitte P. E. Study of the impacts of electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture combined with moderate heat treatments on the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh salmon / P. E. Cayemitte, N. Gerliani, P. Raymond, M. Aider // International journal of food microbiology. 2021. Vol. 358. Article 109285. https://doi.org/10.1016/j.ijfoodmicro.2021.109285

Qin M. Effects of wheat tempering with slightly acidic electrolyzed water on the microbiota and flour characteristics / M. Qin, Y. Fu, N. Li, Y. Zhao, B. Yang, L. Wang, S. Ouyang // Foods. 2022. Vol. 11(24). Article 3990. https://doi.org/10.3390/foods11243990

Chen Y.-X. Effects of wheat tempering with slightly acidic electrolyzed water on the microbial, biological, and chemical characteristics of different flour streams / Y.-X. Chen, X.-N. Guo, J.-J. Xing, X.-H. Sun, K.-X. Zhu // LWT. 2020. Vol. 118. Article 108790. https://doi.org/10.1016/j.lwt.2019.108790

Momen M. Impact of alkaline electro-activation treatment on physicochemical and functional properties of sweet whey / M. Momen, F. Farhad Alavi, M. Mohammed Aider // Food chemistry. 2022. Vol. 373(A). Article 131428. https://doi.org/10.1016/j.foodchem.2021.131428

Karim A. Sustainable electroisomerization of lactose into lactulose and comparison with the chemical isomerization at equivalent solution alkalinity / A. Karim, M. Aider // ACS omega. 2020. Vol. 5(5). P. 2318-2333. https://doi.org/10.1021/acsomega.9b03705

Кругликов Б.В. Применение ЭХА-растворов для экстракции горьких веществ хмеля / Б.В. Кругликов, М.В., Гернет // Пиво и напитки. 2011. № 2. С. 36–38.

Lin H.M. Effect of partial replacement of polyphosphate with alkaline electrolyzed water (AEW) on the quality of catfish fillets / H. M. Lin, Y. C. Hung, S. G. Deng // Food control. 2020. Vol. 112. Article 107117. https://doi.org/10.1016/j.foodcont.2020.107117

Pogorelov A. G. Properties of serum albumin in electrolyzed water / A.G. Pogorelov, L.G. Ipatova, M.A. Pogorelova, A.L. Kuznetsov, O.A. Suvorov // Foods and Raw Materials. 2022. Vol. 10(1). P. 117–126. https://doi.org/10.21603/2308-4057-2022-1-117-126

Liu R. Quality improvement effects of electrolyzed water on rice noodles prepared with semidry-milled rice flours / R. Liu, Z.-L. Yu, Y.-L. Sun, L.-T. Tong, L.-Y. Liu, L.-L. Wang, X.-R. Zhou, S.-M. Zhou // Food science and biotechnology. 2021. Vol. 30. P. 823–832. https://doi.org/10.1007/s10068-021-00923-x

Xing J.-J. Effect of dough mixing with slightly acidic electrolyzed water on the shelf-life and quality characteristics of fresh wet noodles / J.-J. Xing, D.-H. Jiang, X.-N. Guo, Z. Yang, K.-X. Zhu // Food control. 2021. Vol. 124. Article 107891. https://doi.org/10.1016/j.foodcont.2021.107891

Nilova L. A study of the forms of bound water in bread and bakery products using differential thermal analysis / L. Nilova, N. Naumenko, I. Kalinina // Agronomy Research. 2017. Vol. 15(S2). P. 1386–1398.

Орлов Б.Ю. Исследование реологических свойств пищевых материалов, обработанных методами электротехнологии / Б.Ю. Орлов, Е.Г. Степанова, А.С. Зайцев // Альманах мировой науки. 2017. Т. 17(2–1). С. 65–66.

Bölek S. Effects of different types of electrolyzed waters on rheological characteristics of dough and quality properties of bread / S. Bölek, F. Tosya, Ö. Dinç // Food science and technology international. 2023. Vol. 6. https://doi.org/10.1177/10820132231170288

Бушина И.А. Электрохимически активированная вода в технологии коньяка (бренди) / И.А. Бушина, М.В. Гернет // Пиво и напитки. 2004. № 6. С. 50–52.

Yu Z.L. Effect of electrolyzed water on enzyme activities of triticale malt during germination / Z.L. Yu, R. Liu // Journal of food science and technology. 2019. Vol. 56. P. 1495–1501. https://doi.org/10.1007/s13197-019-03637-5

Khabaeva Z. Evaluation of Staphylococcus aureus and Escherichia coli resistance to plant extracts in planktonic cell and biofilm models / Z.G. Khabaeva, F.A. Agaeva, D.A. Marzoeva, A.A. Burnatseva, V.D. Butkhudze // Siberian Journal of Life Sciences and Agriculture. 2023. Vol. 15(6). P. 11-28. https://doi.org/10.12731/2658-6649-2023-15-6-957

References

Bakhir V.M. Universal electrochemical technology for environmental protection / V.M. Bakhir, A.G. Pogorelov. International journal of pharmaceutical research and allied sciences, 2018, vol. 7(1), pp. 41–57.

Ding T. Electrolyzed water in food: fundamentals and applications / T. Ding, D. H. Oh, D. Liu. Singapore: Springer, 2019, 274 p. https://doi.org/10.1007/978-981-13-3807-6

Johansson B. Functional water-in promotion of health beneficial effects and prevention of disease. Internal medicine review, 2017, vol. 3(2), article 321. http://dx.doi.org/10.18103/imr.v3i2.321

Ramírez Orejel, J. C. Applications of electrolyzed water as a sanitizer in the food and animal-by products industry / J. C. Ramírez Orejel, J. A. Cano-Buendía. Processes, 2020, vol. 8(5), article 534. https://doi.org/10.3390/pr8050534

Ignatov I. Preparation of electrochemically activated water solutions (catholyte / anolyte) and studying their physical-chemical properties / I. Ignatov, G. Gluhchev, S. Karadzhov, G. Miloshev, N. Ivanov, O. Mosin. Journal of medicine, physiology and biophysics, 2015, vol. 13, pp. 1-21.

Chen B.-K. Electrolyzed water and its pharmacological activities: a mini-review / B.-K. Chen, C.-K. Wang. Molecules, 2022, vol. 27 (4), article 1222. https://doi.org/10.3390/molecules27041222

Ignatov I. Dynamic nano clusters of water on waters catholyte and anolyte: electrolysis with nano membranes / I. Ignatov, G. Gluhchev, S. Karadzhov, I. Yaneva, N. Valcheva, G. Dinkov et al. Physical science international journal, 2020, vol. 24(1), pp. 46–54. http://dx.doi.org/10.9734/psij/2020/v24i130173

Ignatov I. Structuring of water clusters depending on the energy of hydrogen bonds in electrochemically activated waters Anolyte and Catholyte / I. Ignatov, G. Gluhchev, N. Neshev, D. Mehandjiev. Bulgarian chemical communications, 2021, vol. 53(2), pp. 234-239. https://doi.org/10.34049/bcc.53.2.5376

Jiménez-Pichardo R. Innovative control of biofilms on stainless steel surfaces using electrolyzed water in the dairy industry / R. Jiménez-Pichardo, I. Hernández-Martínez, C. Regalado-González, J. Santos-Cruz, Y. Meas-Vong, M.d.C. Wacher-Rodarte, J. Carrillo-Reyes, I. Sánchez-Ortega, B.E. García-Almendárez. Foods, 2021, vol. 10(1), article 103. https://doi.org/10.3390/foods10010103

Rebezov M. Application of electrolyzed water in the food industry: a review / M. Rebezov, K. Saeed, A. Khaliq, S.J.U. Rahman, N. Sameed, A. Semenova, M. Khayrullin, A. Dydykin, Y. Abramov, M. Thiruvengadam, M.A. Shariati, S.P. Bangar, J.M. Lorenzo. Applied sciences, 2022, vol. 12(13), article 6639. https://doi.org/10.3390/app12136639

Yan P. Stability and Antibiofilm Efficiency of Slightly Acidic Electrolyzed Water Against Mixed-Species of Listeria monocytogenes and Staphylococcus aureus / P. Yan, R. Chelliah, K.-h. Jo, V. Selvakumar, X. Chen, H.-y. Jo, D.H. Oh. Frontiers in microbiology, 2022, vol. 13, article 865918. https://doi.org/10.3389/fmicb.2022.865918

Vassileva P. Results from the research of water catholyte with nascent (atomic) hydrogen / P. Vassileva, D. Voykova, I. Ignatov, S. Karadzhov, S. Gluhchev, N. Ivanov, D. Mehandjiev. Journal of medicine, physiology and biophysics, 2019, vol. 52, pp. 7-11. https://doi.org/10.7176/JMPB/52-02.

Khrapenkov S.N. Application of ECA solutions and enzyme preparations for hop extraction / S.N. Khrapenkov, M.V. Gernet, D.A. Sviridov, K.V. Kobelev, V.M. Bakhir. Beer and Drinks, 2004, no. 2, pp. 32-33.

Gernet M.V. Influence of physical and chemical methods of processing plant raw materials on the extraction of phenolic compounds / M.V. Gernet, I.N. Gribkova. Food Industry, 2020, no. 7, pp. 44-47. https://doi.org/10.24411/0235-2486-2020-10075

Gorbacheva M.V. Electrochemical activation as a fat rendering technology / M.V. Gorbacheva, V.E. Tarasov, S.A. Kalmanovich, A.I. Sapozhnikova. Foods and raw materials, 2021, vol. 9(1), pp. 32–42. https://doi.org/10.21603/2308-4057-2021-1-32-42

Kobelev K.V. Study of brewer’s spent grain environmentally friendly processing ways / K.V. Kobelev, I.N. Gribkova, L.N. Kharlamova, A.V. Danilyan, M.A. Zakharov, I.V. Lazareva, V.I. Kozlov, O.A. Borisenko. Molecules, 2023, vol. 28, article 4553. https://doi.org/10.3390/molecules28114553

Cayemitte P. E. Study of the impacts of electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture combined with moderate heat treatments on the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh salmon / P. E. Cayemitte, N. Gerliani, P. Raymond, M. Aider. International journal of food microbiology, 2021, vol. 358, article 109285. https://doi.org/10.1016/j.ijfoodmicro.2021.109285

Qin M. Effects of wheat tempering with slightly acidic electrolyzed water on the microbiota and flour characteristics / M. Qin, Y. Fu, N. Li, Y. Zhao, B. Yang, L. Wang, S. Ouyang. Foods, 2022, vol. 11(24), article 3990. https://doi.org/10.3390/foods11243990

Chen Y.-X. Effects of wheat tempering with slightly acidic electrolyzed water on the microbial, biological, and chemical characteristics of different flour streams / Y.-X. Chen, X.-N. Guo, J.-J. Xing, X.-H. Sun, K.-X. Zhu. LWT, 2020, vol. 118, article 108790. https://doi.org/10.1016/j.lwt.2019.108790

Momen M. Impact of alkaline electro-activation treatment on physicochemical and functional properties of sweet whey / M. Momen, F. Farhad Alavi, M. Mohammed Aider. Food chemistry, 2022, vol. 373(A), article 131428. https://doi.org/10.1016/j.foodchem.2021.131428

Karim A. Sustainable electroisomerization of lactose into lactulose and comparison with the chemical isomerization at equivalent solution alkalinity / A. Karim, M. Aider. ACS omega, 2020, vol. 5(5), pp. 2318-2333. https://doi.org/10.1021/acsomega.9b03705

Kruglikov B.V. Application of ECHA-solutions for extraction of bitter substances of hops / B.V. Kruglikov, M.V., Gernet. Beer and drinks, 2011, no. 2, pp. 36-38.

Lin H.M. Effect of partial replacement of polyphosphate with alkaline electrolyzed water (AEW) on the quality of catfish fillets / H. M. Lin, Y. C. Hung, S. G. Deng. Food control, 2020, vol. 112, article 107117. https://doi.org/10.1016/j.foodcont.2020.107117

Pogorelov A. G. Properties of serum albumin in electrolyzed water / A.G. Pogorelov, L.G. Ipatova, M.A. Pogorelova, A.L. Kuznetsov, O.A. Suvorov. Foods and Raw Materials, 2022, vol. 10(1), pp. 117–126. https://doi.org/10.21603/2308-4057-2022-1-117-126

Liu R. Quality improvement effects of electrolyzed water on rice noodles prepared with semidry-milled rice flours / R. Liu, Z.-L. Yu, Y.-L. Sun, L.-T. Tong, L.-Y. Liu, L.-L. Wang, X.-R. Zhou, S.-M. Zhou. Food science and biotechnology, 2021, vol. 30, pp. 823–832. https://doi.org/10.1007/s10068-021-00923-x

Xing J.-J. Effect of dough mixing with slightly acidic electrolyzed water on the shelf-life and quality characteristics of fresh wet noodles / J.-J. Xing, D.-H. Jiang, X.-N. Guo, Z. Yang, K.-X. Zhu. Food control, 2021, vol. 124, article 107891. https://doi.org/10.1016/j.foodcont.2021.107891

Nilova L. A study of the forms of bound water in bread and bakery products using differential thermal analysis / L. Nilova, N. Naumenko, I. Kalinina. Agronomy Research, 2017, vol. 15(S2), pp. 1386–1398.

Orlov B.Yu. Investigation of rheological properties of food materials processed by electrotechnology methods / B.Yu. Orlov, E.G. Stepanova, A.S. Zaitsev. Almanac of World Science, 2017, vol. 17(2-1), pp. 65-66.

Bölek S. Effects of different types of electrolyzed waters on rheological characteristics of dough and quality properties of bread / S. Bölek, F. Tosya, Ö. Dinç. Food science and technology international, 2023, vol. 6. https://doi.org/10.1177/10820132231170288

Bushina I.A. Electrochemically activated water in the technology of cognac (brandy) / I.A. Bushina, M.V. Gernet. Beer and drinks, 2004, no. 6, pp. 50-52.

Yu Z.L. Effect of electrolyzed water on enzyme activities of triticale malt during germination / Z.L. Yu, R. Liu. Journal of food science and technology, 2019. vol. 56, pp. 1495–1501. https://doi.org/10.1007/s13197-019-03637-5

Khabaeva Z. Evaluation of Staphylococcus aureus and Escherichia coli resistance to plant extracts in planktonic cell and biofilm models / Z.G. Khabaeva, F.A. Agaeva, D.A. Marzoeva, A.A. Burnatseva, V.D. Butkhudze. Siberian Journal of Life Sciences and Agriculture, 2023, vol. 15(6), pp. 11-28. https://doi.org/10.12731/2658-6649-2023-15-6-957


Просмотров аннотации: 11
Загрузок PDF: 10
Опубликован
2024-12-30
Как цитировать
Pogorelov, A., Ipatova, L., Panait, A., Pogorelova, M., Stankevich, A., & Suvorov, O. (2024). ПОВЕДЕНИЕ ХЛЕБОПЕКАРНЫХ И ПИВНЫХ ДРОЖЖЕЙ В ТЕХНОЛОГИЧЕСКИХ УСЛОВИЯХ ПРИ ИСПОЛЬЗОВАНИИ ЭЛЕКТРОХИМИЧЕСКИ АКТИВИРОВАННОГО ВОДНОГО РАСТВОРА. Siberian Journal of Life Sciences and Agriculture, 16(6), 490-514. https://doi.org/10.12731/2658-6649-2024-16-6-1007
Раздел
Междисциплинарные исследования