ОСОБЕННОСТИ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ СВОЙСТВ ВИРУСА ЛЕЙКОЗА КРУПНОГО РОГАТОГО СКОТА: ПЕРВЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ НА ТЕРРИТОРИИ РЕСПУБЛИКИ БАШКОРТОСТАН

  • Maxim V. Petropavlovskiy Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0002-9892-6092
  • Irina M. Donnik Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0001-8349-3004
  • Natalia A. Bezborodova Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0003-2793-5001
  • Valeria A. Makutina Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0003-1127-2792
  • Albina G. Isaeva Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0001-8395-1247
  • Alexey V. Lysov Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0003-2480-2019
  • Alisa S. Romanova Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН) https://orcid.org/0000-0003-0189-2963
Ключевые слова: вирус лейкоза крупного рогатого скота, ДНК-секвенирование, филогенетический анализ, генетические группы, биоинформатический анализ

Аннотация

Целью исследования являлось изучение молекулярно-генетических свойств возбудителя лейкоза крупного рогатого скота, персистирующего на территории Республики Башкортостан.

Молекулярно-генетические исследования биологического материала от разновозрастных групп крупного рогатого скота республики, инфицированного вирусом лейкоза проведены методами ПЦР-ПДРФ, ДНК-секвенирования.

В результате получены новые знания о молекулярно-генетической структуре и основных полиморфизмах возбудителя лейкоза животных на территории Республики Башкортостан. Впервые осуществлена классификация изолятов вируса лейкоза крупного рогатого скота (BLV), выделенных на территории республики с помощью биоинформатических методов статистической обработки данных. Определены доминирующие генетические группы, дана оценка аминокислотным заменам в структуре поверхностного gp51 (SU) гликопротеина изолятов вируса лейкоза.

В результате проведенного кластерного анализа, большинство последовательностей из республики Башкортостан отнесено к генетической группе BLV 4 (бельгийский генотип по ПДРФ-реакции).

Биоинформатической обработкой определены однонуклеотидные SNP генотип-специфические аминокислотные полиморфизмы в структуре env гена исследуемых изолятов BLV, приводящие к аминокислотным изменениям в структуре SU gp51 гликопротеина оболочки, основные из которых имели расположение в его N-концевой части.

Выполненные исследования расширяют научные знания о генетических свойствах отдельных генотипов возбудителя лейкоза. Эпизоотологический и молекулярно-генетический мониторинг позволяет также изучать особенности распространения генетических типов возбудителя лейкоза в различных условиях и на разных административных территориях Российской Федерации в корреляции с характером течения лейкозного патологического процесса среди популяций животных. Это позволяет прогнозировать возможности появления новых «агрессивных» генетических вариантов возбудителя, межвидовую передачу и своевременно разрабатывать современные методы диагностики и контроля за их распространением.

Информация о финансировании. Исследование проведено в рамках государственного задания №0532-2021-0007.

EDN: FYDOJW

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Maxim V. Petropavlovskiy, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

д.в.н., ведущий научный сотрудник отдела мониторинга и прогнозирования инфекционных болезней

Irina M. Donnik, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

д.б.н., профессор, академик РАН, главный научный сотрудник отдела мониторинга и прогнозирования инфекционных болезней

Natalia A. Bezborodova, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

к.в.н., старший научный сотрудник отдела геномных исследований и селекции животных

Valeria A. Makutina, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

к.б.н., старший научный сотрудник отдела геномных исследований и селекции животных

Albina G. Isaeva, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

д.б.н., доцент, ведущий научный сотрудник отдела ветеринарно-лабораторной диагностики с испытательной лабораторией

Alexey V. Lysov, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

к.в.н., ведущий научный сотрудник отдела ветеринарно-лабораторной диагностики с испытательной лабораторией

Alisa S. Romanova, Федеральное государственное бюджетное научное учреждение Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук (ФГБНУ УрФАНИЦ УрО РАН)

к.т.н., старший научный сотрудник отдела ветеринарно-лабораторной диагностики с испытательной лабораторией

Литература

Донник И.М. Биологические особенности и устойчивость к лейкозу крупного рогатого скота в различных экологических условиях Урала: Автореф. дис. д-ра биол. наук: 06.02.01, 16.00.03. Новосибирск, 1997. 48 с. (Donnik I.M. Biological features and resistance to bovine leukemia in various environmental conditions of the Urals. Novosibirsk, 1997, 48 p.).

Aida Y. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus / Y. Aida, H. Murakami, M. Takahashi et al. // Front Microbiol. 2013. Vol. 4. P. 328. https://doi.org/10.3389/fmicb.2013.00328

Amills M. Reduced IL-2 and IL-4 mRNA expression in CD4+ T cells from bovine leukemia virus-infected cows with persistent lymphocytosis / M. Amills, V. Ramiya, J. Norimine et al. // Virology. 2002. Vol. 304. P. 1-9. https://doi.org/10.1006/viro.2002.1651

Asfaw Y. Distribution and superinfection of bovine leukemia virus genotypes in Japan / Y. Asfaw, S. Tsuduku, M. Konishi et al. // Arch Virol. 2005. Vol. 150. P. 493-505. https://doi.org/10.1007/s00705-004-0433-5

Bai L. Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle / L. Bai, H. Otsuki, H. Sato et al. // Retrovirology. 2015. Vol. 12. P. 106. https://doi.org/10.1186/s12977-015-0233-x

Bai L. Mapping of CD4+ T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression / L. Bai, Sn. Takeshima, M. Sato et al. // Virol. J. 2019. Vol. 16. P. 157. https://doi.org/10.1186/s12985-019-1259-9

Bai L. Novel CD8+ cytotoxic T cell epitopes in bovine leukemia virus with cattle / L. Bai, S. Takeshima, E. Isogai et al. // Vaccine. 2015. Vol. 33. P. 7194-7202. https://doi.org/10.1016/j.vaccine.2015.10.128

Bao Y. The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review / Y. Bao, X. Cao // J. Autoimmun. 2014. Vol. 55. P. 10-23. https://doi.org/10.1016/j.jaut.2014.04.001

Bartlett P.C. Current developments in the epidemiology and control of enzootic bovine leukosis as caused by bovine leukemia virus / P.C. Bartlett, V.J. Ruggiero, B. Norby et al. // Pathogens. 2020. Vol. 9. №12. P. 1-13. https://doi.org/10.3390/pathogens9121058

Beier D. Identification of different BLV provirus isolates by PCR RFLPA and DNA sequencing / D. Beier, P. Blankenstain, O. Marquard et al. 2001. Vol. 114. P. 252-256.

Callebaut I. Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51 / I. Callebaut, V. Voneche, A. Mager et al. // J. Virol. 1993. Vol. 67. P. 5321-5327. https://doi.org/10.1128/jvi.67.9.5321-5327.1993

De Brogniez A. Determinants of the bovine leukemia virus envelope glycoproteins involved in infectivity, replication and pathogenesis / A. De Brogniez, J. Mast, L. Willems et al. // Viruses. 2016. Vol. 8. P. 88. https://doi.org/10.3390/v8040088

De Brogniez A. Mutation of a Single Envelope N-Linked Glycosylation Site Enhances the Pathogenicity of Bovine Leukemia Virus / A. De Brogniez, A.B. Bouzar, J.R. Jacques et al. // J. Virology. 2015. №89 (17). P. 8945-8956. https://doi.org/10.1128/JVI.00261-15

Donnik I.M., KrivonogovaA.S., PetropavlovskyM.V., ShkuratovaI.A., Rola-ŁuszczakM., KuzrmakJ. Revisiting the issue of the molecular-genetic structure of the causative agent of the bovine leukemia virus in the Russian Federation // Indian Journal of Science and Technology. 2016. Vol. 9. № 42. P. 104253. https://doi.org/10.17485/ijst/2016/v9i42/104253

Dube S. The complete genomic sequence of an in vivo low replicating BLV strain / S. Dube, L. Abbott, D.K. Dube // Virol. J. 2009. Vol. 6. P. 120. https://doi.org/10.1186/1743-422x-6-120

Emanuelson U. Relationships between herd bovine leukemia-virus infection status and reproduction, disease incidence, and productivity in swedish dairy herds. Prev / U. Emanuelson, K. Scherling, H. Pettersson // Vet. Med. 1992. Vol. 12. P. 121-131. https://doi.org/10.1016/0167-5877(92)90075-Q

Erskine R.J. Bovine leukemia virus infection in dairy cattle: effect on serological response to immunization against J5 Escherichia coli bacterin / R.J. Erskine, P.C. Bartlett, K.M. Sabo // Vet. Med. Int. 2011. https://doi.org/10.4061/2011/915747

Erskine R.J. Effect of infection with bovine leukosis virus on lymphocyte proliferation and apoptosis in dairy cattle / R.J. Erskine, C.M. Corl, J.C. Gandy // Am. J. Vet. Res. 2011. Vol. 72. P. 1059-1064. https://doi.org/10.2460/ajvr.72.8.1059

Fechner H. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle // H. Fechner, P. Blankenstein, A.C. Looman et al. // Virology. 1997. Vol. 237. P. 261-269. https://doi.org/10.1006/viro.1997.8784

Frie M.C. Bovine leukemia virus: a major silent threat to proper immune responses in cattle / M.C. Frie, P.M. Coussens // Vet Immunol Immunopathol. 2015. № 163(3-4). P. 103-114. https://doi.org/10.1016/j.vetimm.2014.11.014

Gatot J.S. Bovine Leukemia Virus SU Protein Interacts with Zinc, and Mutations within Two Interacting Regions Dierently Aect Viral Fusion and Infectivity In Vivo / J.S. Gatot, I. Callebaut, C. Van Lint et al. // J. Virol. 2002. Vol. 76. P. 7956-7967. https://doi.org/10.1128/JVI.76.16.7956-7967.2002

Gatot J.S. Conservative mutations in the immunosuppressive region of the bovine leukemia virus transmembrane protein affect fusion but not infectivity in vivo / J.S. Gatot, I. Callebaut, J.P. Mornon et al. // J. Biol. Chem. 1998. Vol. 273. P. 12870-12880. https://doi.org/10.1074/jbc.273.21.12870

Gulyukin M.I. Genetic polymorphism of the bovine leukemia virus in the Russian federation / M.I. Gulyukin, N.G. Kozyreva, L.A. Ivanova et al. // Russ. Agricult. Sci. 2016. Vol. 42. P. 472-475. https://doi.org/10.3103/S1068367416060112

Gutiérrez G. Vaccination against δ-retroviruses: The bovine leukemia virus paradigm / G. Gutiérrez, S.M. Rodríguez, A. De Brogniez et al. // Viruses. 2014. Vol. 6. P. 2416-2417. https://doi.org/10.3390/v6062416

Johnston E.R. Envelope Proteins Containing Single Amino Acid Substitutions Support a Structural Model of the Receptor-Binding Domain of Bovine Leukemia Virus Surface Protein / E.R. Johnston, L.M. Albritton, K. Radke // J. Virol. 2002. № 76. P. 10861-10872. https://doi.org/10.1128/JVI.76.21.10861-10872.2002

Johnston E.R. The SU and TM envelope protein subunits of bovine leukemia virus are linked by disulfide bonds, both in cells and in virions / E.R. Johnston, K.J. Radke // Virol. 2000. № 74(6). P. 2930-2935. https://doi.org/10.1128/JVI.74.6.2930-2935.2000

Juliarena M.A. Bovine leukemia virus: Current perspectives / M.A. Juliarena, C.N. Barrios, C.M. Lützelschwab et al. // Virus Adapt Treat. 2017. № 9. P. 13- 26. https://doi.org/10.2147/VAAT.S113947

LaDronka R.M. Prevalence of Bovine Leukemia Virus Antibodies in US Dairy Cattle / R.M. LaDronka, S. Ainsworth, M.J. Wilkins et al. // Vet. Med. Int. 2018. № 8. https://doi.org/10.1155/2018/5831278

Lavanya M. Cell surface expression of the bovine leukemia virus-binding receptor on B and T lymphocytes is induced by receptor engagement / M. Lavanya, S. Kinet, A. Montel-Hagen et al. // J. Immunol. 2008. Vol. 181. P. 891-898. https://doi.org/10.4049/jimmunol.181.2.891

Lundberg P. Gamma delta + T-lymphocyte cytotoxicity against envelope-expressing target cells is unique to the alymphocytic state of bovine leukemia virus infection in the natural host / P. Lundberg, G.A. Splitter // J. Virol. 2000. Vol. 74. P. 8299-8306. https://doi.org/10.1128/JVI.74.18.8299-8306.2000

Mamoun R.Z. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins / R.Z. Mamoun, M. Morisson, N. Rebeyrotte et al. // J. Virol. 1990. Vol. 64. P. 4180-4188. https://doi.org/10.1128/jvi.64.9.4180-4188.1990

Marawan M.A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective / M.A. Marawan, A. Alouffi, S. El Tokhy // Viruses. 2021. № 13. P. 2167. https://doi.org/10.3390/v13112167

Matsumura K. Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan / K. Matsumura, E. Inoue, Y. Osawa et al. // Virus Res. 2011. Vol. 155. P. 343-348. https://doi.org/10.1016/j.virusres.2010.11.005

Meirom R. Bovine leukemia virus-gp51 antigen expression is associated with CD5 and IgM markers on infected lymphocytes / R. Meirom, S. Moss, J. Brenner // Vet. Immunol. Immunopathol. 1997. Vol. 59. P. 113-119. https://doi.org/10.1016/S0165-2427(97)00056-1

Mirsky M.L. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages of infection / M.L. Mirsky, C.A. Olmstead, Y. Da et al. // J. Virol. 1996. Vol. 70. P. 2178-2183. https://doi.org/10.1128/jvi.70.4.2178-2183.1996

Moratorio G. Adetailed molecular analysis of complete bovine leukemia virus genomes isolated from B-cell lymphosarcomas / G. Moratorio, S. Fischer, S. Bianchi et al. // Vet. Res. 2013. Vol. 44. P. 19. https://doi.org/10.1186/1297-9716-44-19

Nakada S. Estimation of economic loss by carcass weight reduction of Japanese dairy cows due to infection with bovine leukemia virus / S. Nakada, Y. Fujimoto, J. Kohara et al. // Prev Vet Med. 2022. № 198. P. 105528. https://doi.org/10.1016/j.prevetmed.2021.105528

Nekouei O. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows / O. Nekouei, J. VanLeeuwen, H. Stryhn et al. // Prev Vet Med. 2016. Vol. 133. P. 1-9. https://doi.org/10.1016/j.prevetmed.2016.09.011

Ott S.L. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms / S.L. Ott, R. Johnson, S.J. Wells // Prev Vet Med. 2003. Vol. 61. P. 249-262. https://doi.org/10.1016/j.prevetmed.2003.08.003

Panei C. J. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR // C.J. Panei, S.N. Takeshima, T. Omori et al. 2013. № 9 (95). https://doi.org/10.1186/1746-6148-9-95

Paul P.S. Evidence for the replication of bovine leukemia virus in B lymphocytes / P.S. Paul, K.A. Pomeroy, D.W. Johnson et al. // American Journal of Veterinary Research. 1977. Vol. 38. P. 873-876. https://doi.org/10.2460/ajvr.1977.38.06.873

Petropavlovskiy M. Comparative evaluation of amino acid composition of colostrum from BLV-infected and seronegative cows / M. Petropavlovskiy, A. Poryvaeva, A. Lysov, N. Dudkina, L. Khalturina // Reproduction in domestic animals. 2021. P. 86.

Petropavlovskiy M.V. Detection and immunobiological charcterizations of bovine leukeima virus in Russian Federation territory in dependence on geographical variations / M.V. Petropavlovskiy, I.M. Donnik, N.A. Bezborodova, A.S. Krivonogova // Journal of Integrated OMICS. 2019. Vol. 9. № 1. P. 23-27. https://doi.org/10.5584/jiomics.v9i1.255

Petropavlovskiy M.V. Epizootiological and genetic characterization of the bovine leukemia virus in the Russian Federation-evaluation of bovine leukemia virus in Russia / M. V. Petropavlovskiy, I. Donnik, N. Bezborodova // Veterinarski Arhiv. 2019. Vol. 89. № 6. P. 785-798. https://doi.org/10.24099/vet.arhiv.0555

Petropavlovskiy M.V. Immuno-biological evaluation of individual genetic variants of bovine leukemia virus in the conditions of the Ural region / M. V. Petropavlovsky, N. A. Vereshchak, N. A. Bezborodova, O. Yu. Oparina // Digital agriculture - development strategy: Proceedings of the International Scientific and Practical Conference. Ekaterinburg, 2019. P. 372-377. https://doi.org/10.2991/ispc-19.2019.84

Pluta A. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs / A. Pluta, L.M. Albritton, M. Rola-Luszczak et al. // Retrovirology. 2018. Vol. 15. https://doi.org/10.1186/s12977-017-0383-0

Pluta A. Molecular characterization of bovine leukemia virus from Moldovan dairy cattle / A. Pluta, M. Rola-Luszczak, P. Kubis et al. // J. Arch. Virol. 2017. Vol. 162. P. 1563-1576. https://doi.org/10.1007/s00705-017-3241-4

Pluta A Rola-Łuszczak M, Hoffmann FG, Donnik I, Petropavlovskiy M, Kuźmak J. Genetic Variability of Bovine Leukemia Virus: Evidence of Dual Infection, Recombination and Quasi-Species // Pathogens. 2024. Vol. 13(2), 178. https://doi.org/10.3390/pathogens13020178

Polat M. Epidemiology and genetic diversity of bovine leukemia virus / M. Polat, S.N. Takeshima, Y. Aida // Virol J. 2017. Vol. 14 (1). P. 209. https://doi.org/10.1186/s12985-017-0876-4

Rice N.R. The nucleotide sequence of the env gene and the post-env region of bovine leukemia virus / N.R. Rice, R.M. Stephens, D. Couez et al. // Virology. 1984. № 138. P. 82-93. https://doi.org/10.1016/0042-6822(84)90149-1

Rola-Łuszczak M. The Molecular Characterization of Bovine Leukaemia Virus Isolates from Eastern Europe and Siberia and Its Impact on Phylogeny / M. Rola-Łuszczak, A. Pluta, M. Olech, I. Donnik, M. Petropavlovskiy // PLoS One. 2013. Vol. 8. Issue 3. https://doi.org/10.1371/journal.pone.0058705

Ruggiero V.J. Controlling bovine leukemia virus in dairy herds by identifying and removing cows with the highest proviral load and lymphocyte counts / V.J. Ruggiero, B. Norby, O.J. Benitez et al. // J Dairy Sci. 2019. № 102 (10). P. 9165-9175. https://doi.org/10.3168/jds.2018-16186

Saitou N. The neighbor-joining method: a new method for reconstructing phylogenetic trees / N. Saitou, M. Nei // Mol. Biol. Evol. 1987. Vol. 4. P. 406-425.

Sandev N. Influence of enzootic bovine leucosis virus upon the incidence of subclinical mastitis in cows at a different stage of infection / N. Sandev, M. Koleva, R. Binev, D. Ilieva // Veterinarski Archiv. 2004. Vol. 76. P. 411-416.

Stone D.M. CD4 T lymphocyte activation in BLV-induced persistent B lymphocytosis in cattle / D.M. Stone, L.K. Norton, J.C. Chambers // Clin. Immunol. 2000. Vol. 96. P. 280-288. https://doi.org/10.1006/clim.2000.4900

Stone D.M. Up-regulation of IL-2 receptor alpha and MHC class II expression on lymphocyte subpopulations from bovine leukemia virus infected lymphocytotic cows / D.M. Stone, A.J. Hof, W.C. Davis // Vet. Immunol. Immunopathol. 1995. Vol. 48. P. 65-76. https://doi.org/10.1016/0165-2427(95)05423-4

Stott M.L. Integrated bovine leukosis proviral DNA in T helper and T cytotoxic/suppressor lymphocytes / M.L. Stott, M.C. Thurmond, S.J. Dunn // J. Gen. Virol. 1991. Vol. 72. P. 307-315. https://doi.org/10.1099/0022-1317-72-2-307

Sultanov A., Rola-Luszczak M., Mamanova S., Rylo A., Osinski Z., Saduakassova M.A., Bashenova E., Kuzmak J. Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan // Pathogens. 2022. Vol. 11, 180. https://doi.org/10.3390/pathogens11020180

Suzuki A. Phylogenetic Analysis of South African Bovine Leukaemia Virus (BLV) Isolates / A. Suzuki et al. // Viruses. 2020. № 12 (8). P. 898. https://doi.org/10.3390/v12080898

Suzuki S. Expression analysis of Foxp3 in T cells from bovine leukemia virus infected cattle / S. Suzuki, S. Konnai, T. Okagawa // Microbiol. Immunol. 2013. Vol. 57. P. 600-604. https://doi.org/10.1111/1348-0421.12073

Thompson-Crispi K.A. Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders / K.A. Thompson-Crispi, F. Miglior, B.A. Mallard // Clin. Vaccine Immunol. 2013. Vol. 20. P. 106-112. https://doi.org/10.1128/CVI.00494-12

Trueblood E.S. B-lymphocyte proliferation during bovine leukemia virus-induced persistent lymphocytosis is enhanced by T-lymphocyte - derived interleukin-2 / E.S. Trueblood, W.C. Brown, G.H. Palmer // J. Virol. 1998. Vol. 72. P. 3169-3177. https://doi.org/10.1128/JVI.72.4.3169-3177.1998

Yu C. Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China / C. Yu, X. Wang, Y. Zhou // BMC Vet. Res. 2019. Vol. 15. P. 179. https://doi.org/10.1186/s12917-019-1863-3

Zavorotinskaya T. Suppression of a fusion defect by second site mutations in the ecotropic murine leukemia virus surface protein / T. Zavorotinskaya, L.M. Albritton // J Virol. 1999. Vol. 73. P. 5034-5042. https://doi.org/10.1128/JVI.73.6.5034-5042.1999

Zhao X. Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape / X. Zhao, G.C. Buehring // Virology. 2007. Vol. 366. P. 150-165. https://doi.org/10.1016/j.virol.2007.03.058


Просмотров аннотации: 24
Загрузок PDF: 13
Опубликован
2024-12-30
Как цитировать
Petropavlovskiy, M., Donnik, I., Bezborodova, N., Makutina, V., Isaeva, A., Lysov, A., & Romanova, A. (2024). ОСОБЕННОСТИ МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИХ СВОЙСТВ ВИРУСА ЛЕЙКОЗА КРУПНОГО РОГАТОГО СКОТА: ПЕРВЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ НА ТЕРРИТОРИИ РЕСПУБЛИКИ БАШКОРТОСТАН. Siberian Journal of Life Sciences and Agriculture, 16(6), 202-227. https://doi.org/10.12731/2658-6649-2024-16-6-1020
Раздел
Биохимия, генетика и молекулярная биология