МЕТААНАЛИЗ АССОЦИАЦИИ ПОЛИМОРФИЗМА ГЕНА MSTN RS1805086 С СИЛОВЫМИ ПОКАЗАТЕЛЯМИ СПОРТСМЕНОВ

  • Maxim O. Aksenov Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Бурятский государственный университет имени Доржи Банзарова»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный университет физической культуры, спорта, молодежи и туризма http://orcid.org/0000-0002-0079-5750
Ключевые слова: миостатин, мышцы, сила, гипертрофия, гиперплазия, тренировка, K153R, MSTN, GDF-8, rs1805086, метаанализ

Аннотация

Обоснование. Варианты K/R гена миостатина (MSTN) (rs1805086) связаны с количеством мышечной массы у людей и ответной реакцией организма человека во время силовых тренировок, коррелируют с показателями силовых способностей скелетных мышц спортсменов. Тем не менее недостаточно достоверных данных, чтобы продемонстрировать, являются ли аллельные варианты K и R гена MSTN rs1805086 действительно генетическими факторами, которые могут влиять на силовые показатели скелетных мышц спортсменов и количество мышечной массы.

Цель. Провести систематический обзор и сделать метаанализ ассоциации полиморфизма гена MSTN rs1805086 с силовыми показателями спортсменов.

Материалы и методы. В проведенном исследовании проанализирована 71 научная публикация о миостатине и проведен метаанализ генотипа MSTN K153R rs1805086 у спортсменов тяжелоатлетических видов спорта и контрольной группой.

Результаты. Установлено, что у спортсменов экспериментальной группы более высокая частота минорного аллеля R по сравнению с контрольной (ОШ=2.02, P = 0,05).

Заключение. Таким образом, полученные результаты убедительно демонстрируют, что имеется связь между исследуемым полиморфизмом и силовыми показателями спортсменов, следовательно, дальнейшие попытки ее изучения научно обоснованы.

Скачивания

Данные скачивания пока не доступны.

Биография автора

Maxim O. Aksenov, Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский экономический университет имени Г.В. Плеханова»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Бурятский государственный университет имени Доржи Банзарова»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный университет физической культуры, спорта, молодежи и туризма

профессор кафедры физического воспитания РЭУ им. Г.В. Плеханова; профессор кафедры теории физической культуры ФГБОУ ВО “БГУ”; главный научный сотрудник РГУФКСМиТ, доктор педагогических наук, доцент

Литература

Beunen G., Thomis M. Gene powered? Where to go from heritability (H-2) in muscle strength and power? // Exercise and Sport Sciences Reviews. 2004. Vol. 32, № 4. P. 148-154. https://doi.org/10.1097/00003677-200410000-00005

Mangine G. T., Hoffman J. R., Gonzalez A. M., Townsend J. R., Wells A. J., Jajtner A. R., Beyer K. S., Boone C. H., Miramonti A. A., Wang R., LaMonica M. B., Fukuda D. H., Ratamess N. A., Stout J. R. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men // Physiological Reports. 2015. Vol. 3, № 8. P. 17. https://doi.org/10.14814/phy2.12472

Rodriguez J., Vernus B., Chelh I., Cassar-Malek I., Gabillard J. C., Sassi A. H., Seiliez I., Picard B., Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways // Cellular and Molecular Life Sciences. 2014. Vol. 71, № 22. P. 4361-4371. https://doi.org/10.1007/s00018-014-1689-x

Yamada A. K., Verlengia R., Bueno C. R. Myostatin: genetic variants, therapy and gene doping // Brazilian Journal of Pharmaceutical Sciences. 2012. Vol. 48, № 3. P. 369-377. https://doi.org/10.1590/S1984-82502012000300003

Dalbo V. J., Roberts M. D., Sunderland K. L., Poole C. N., Stout J. R., Beck T. W., Bemben M., Kerksick C. M. Acute Loading and Aging Effects on Myostatin Pathway Biomarkers in Human Skeletal Muscle After Three Sequential Bouts of Resistance Exercise // Journals of Gerontology Series a-Biological Sciences and Medical Sciences. 2011. Vol. 66, № 8. P. 855-865. https://doi.org/10.1093/gerona/glr091

Allen D. L., Hittel D. S., McPherron A. C. Expression and Function of Myostatin in Obesity, Diabetes, and Exercise Adaptation // Medicine and Science in Sports and Exercise. 2011. Vol. 43, № 10. P. 1828-1835. https://doi.org/10.1249/mss.0b013e3182178bb4

Zheng L.-F., Chen P.-J., Xiao W.-H. Signaling pathways controlling skeletal muscle mass // Acta Physiologica Sinica. 2019. Vol. 71, № 4. P. 671–679. https://www.actaps.com.cn/qikan/manage/wenzhang/2019-4-18.pdf

Roth S. M., Martel G. F., Ferrell R. E., Metter E. J., Hurley B. F., Rogers M. A. Myostatin gene expression is reduced in humans with heavy resistance strength training: A brief communication // Experimental Biology and Medicine. 2003. Vol. 228, № 6. P. 706-709. https://doi.org/10.1177/153537020322800609

Shishkin S.S. Miostatin i nekotorye drugie biokhimicheskie faktory, reguliruyushchie rost myshechnykh tkaney u cheloveka i ryada vysshikh pozvonochnykh [Myostatin and some other biochemical factors that regulate the growth of muscle tissue in humans and a number of higher vertebrates] // Uspekhi biologicheskoy khimii. 2004. Vol. 44. P. 209-262. https://www.fbras.ru/wp-content/uploads/2017/10/shishkin.pdf

McPherron A. C., Lawler A. M., Lee S. J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member // Nature. 1997. Vol. 387, № 6628. P. 83-90. https://doi.org/10.1038/387083a0

Kollias H. D., McDermott J. C. Transforming growth factor-beta and myostatin signaling in skeletal muscle // Journal of Applied Physiology. 2008. Vol. 104, № 3. P. 579-587. https://doi.org/10.1152/japplphysiol.01091.2007

McFarlane C., Hui G. Z., Amanda W. Z. W., Lau H. Y., Lokireddy S., Ge X. J., Mouly V., Butler-Browne G., Gluckman P. D., Sharma M., Kambadur R. Human myostatin negatively regulates human myoblast growth and differentiation // American Journal of Physiology-Cell Physiology. 2011. Vol. 301, № 1. P. C195-C203. https://doi.org/10.1152/ajpcell.00012.2011

Ferrell R. E., Conte V., Lawrence E. C., Roth S. M., Hagberg J. M., Hurley B. F. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes // Genomics. 1999. Vol. 62, № 2. P. 203-207. https://doi.org/10.1006/geno.1999.5984

Sergeeva K. V., Miroshnikov A. B., Smolensky A. V. Effect of Growth Hormone Administration on the Mass And Strength of Muscles in Healthy Young Adults: a Systematic Review and Meta-Analysis // Human Physiology. 2019. Vol. 45, №4. P. 452-460. https://doi.org/10.1134/S0362119719030162

Pan H., Ping X. C., Zhu H. J., Gong F. Y., Dong C. X., Li N. S., Wang L. J., Yang H. B. Association of myostatin gene polymorphisms with obesity in Chinese north Han human subjects // Gene. 2012. Vol. 494, № 2. P. 237-241. https://doi.org/10.1016/j.gene.2011.10.045

Thomis M. A., Huygens W., Peeters M., Vlietinck R., Beunen G. P. Linkage analysis of myostatin-pathway genes in human adiposity: The Leuven Genes for Muscular Strength Project // Medicine and Science in Sports and Exercise. 2004. Vol. 36, № 5. P. S99-S99.

Baczek J., Silkiewicz M., Wojszel Z. B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps // Nutrients. 2020. Vol. 12, № 8. https://doi.org/10.3390/nu12082401

Gonzalez-Cadavid N. F., Bhasin S. Role of myostatin in metabolism // Current Opinion in Clinical Nutrition and Metabolic Care. 2004. Vol. 7, № 4. P. 451-457. https://doi.org/10.1097/01.mco.0000134365.99523.7f

Han D. S., Huang C. H., Chen S. Y., Yang W. S. Serum reference value of two potential doping candidates-myostatin and insulin-like growth factor-I in the healthy young male // Journal of the International Society of Sports Nutrition. 2017. Vol. 14. https://doi.org/10.1186/s12970-016-0160-9

Lakshman K. M., Bhasin S., Corcoran C., Collins-Racie L. A., Tchistiakova L., Forlow S. B., Ledger K. S., Burczynski M. E., Dorner A. J., LaVallie E. R. Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration // Molecular and Cellular Endocrinology. 2009. Vol. 302, № 1. P. 26-32. https://doi.org/10.1016/j.mce.2008.12.019

Gonzalez-Freire M., Rodriguez-Romo G., Santiago C., Bustamante-Ara N., Yvert T., Gomez-Gallego F., Rexach J. A. S., Ruiz J. R., Lucia A. The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan // Age. 2010. Vol. 32, № 3. P. 405-409. https://doi.org/10.1007/s11357-010-9139-7

Sharma M., McFarlane C., Kambadur R., Kukreti H., Bonala S., Srinivasan S. Myostatin: Expanding horizons // Iubmb Life. 2015. Vol. 67, № 8. P. 589-600. https://doi.org/10.1002/iub.1392

Feder D., Rugollini M., Santomauro A., Oliveira L. P., Lioi V. P., dos Santos R., Ferreira L. G., Nunes M. T., Carvalho M. H., Delgado P. O., Carvalho A. A. S., Fonseca F. L. A. Erythropoietin reduces the expression of myostatin in mdx dystrophic mice // Brazilian Journal of Medical and Biological Research. 2014. Vol. 47, № 11. P. 966-971. http://dx.doi.org/10.1590/1414-431X20143858

Gentile M. A., Nantermet P. V., Vogel R. L., Phillips R., Holder D., Hodor P., Cheng C., Dai H. Y., Freedman L. P., Ray W. J. Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of beta-catenin // Journal of Molecular Endocrinology. 2010. Vol. 44, № 1. P. 55-73. https://doi.org/10.1677/jme-09-0048

Kim J. S., Cross J. M., Bamman M. M. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women // American Journal of Physiology-Endocrinology and Metabolism. 2005. Vol. 288, № 6. P. E1110-E1119. https://doi.org/10.1152/ajpendo.00464.2004

Lach-Trifilieff E., Minetti G. C., Sheppard K., Ibebunjo C., Feige J. N., Hartmann S., Brachat S., Rivet H., Koelbing C., Morvan F., Hatakeyama S., Glass D. J. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy // Molecular and Cellular Biology. 2014. Vol. 34, № 4. P. 606-618. https://doi.org/10.1128/mcb.01307-13

Jespersen J. G., Nedergaard A., Andersen L. L., Schjerling P., Andersen J. L. Myostatin expression during human muscle hypertrophy and subsequent atrophy: increased myostatin with detraining // Scandinavian Journal of Medicine & Science in Sports. 2011. Vol. 21, № 2. P. 215-223. https://doi.org/10.1111/j.1600-0838.2009.01044.x

Lee S. J., McPherron A. C. Regulation of myostatin activity and muscle growth // Proceedings of the National Academy of Sciences of the United States of America. 2001. Vol. 98, № 16. P. 9306-9311. https://doi.org/10.1073/pnas.151270098

Walker R. G., Poggioli T., Katsimpardi L., Buchanan S. M., Oh J., Wattrus S., Heidecker B., Fong Y. W., Rubin L. L., Ganz P., Thompson T. B., Wagers A. J., Lee R. T. Biochemistry and Biology of GDF11 and Myostatin Similarities, Differences, and Questions for Future Investigation // Circulation Research. 2016. Vol. 118, № 7. P. 1125-1141. https://doi.org/10.1161/circresaha.116.308391

Hill J. J., Qiu Y. C., Hewick R. M., Wolfman N. M. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: A novel protein with protease inhibitor and follistatin domains // Molecular Endocrinology. 2003. Vol. 17, № 6. P. 1144-1154. https://doi.org/10.1210/me.2002-0366

Huang Z. Q., Chen X. L., Chen D. W. Myostatin: A novel insight into its role in metabolism, signal pathways, and expression regulation // Cellular Signalling. 2011. Vol. 23, № 9. P. 1441-1446. https://doi.org/10.1016/j.cellsig.2011.05.003

Drummond M. J., Glynn E. L., Fry C. S., Dhanani S., Volpi E., Rasmussen B. B. Essential Amino Acids Increase MicroRNA-499,-208b, and-23a and Downregulate Myostatin and Myocyte Enhancer Factor 2C mRNA Expression in Human Skeletal Muscle // Journal of Nutrition. 2009. Vol. 139, № 12. P. 2279-2284. https://doi.org/10.3945/jn.109.112797

Ben-Zaken S., Meckel Y., Nemet D., Rabinovich M., Kassem E., Eliakim A. Frequency of the MSTN Lys(K)-153Arg(R) polymorphism among track & field athletes and swimmers // Growth Hormone & IGF Research. 2015. Vol. 25, № 4. P. 196-200. http://dx.doi.org/10.1016/j.ghir.2015.04.001

Fuku N., Alis R., Yvert T., Zempo H., Naito H., Abe Y., Arai Y., Murakami H., Miyachi M., Pareja-Galeano H., Emanuele E., Hirose N., Lucia A. Muscle-Related Polymorphisms (MSTN rs1805086 and ACTN3 rs1815739) Are Not Associated with Exceptional Longevity in Japanese Centenarians // Plos One. 2016. Vol. 11, № 11. https://doi.org/10.1371/journal.pone.0166605

Joulia-Ekaza D., Cabello G. The myostatin gene: physiology and pharmacological relevance // Current Opinion in Pharmacology. 2007. Vol. 7, № 3. P. 310-315. https://doi.org/10.1016/j.coph.2006.11.011

Kostyunina D.S., Ivanova A.D., Smirnova O.V. Myostatin: Twenty Years Later // Human Physiology. 2018. Vol. 44. P. 88–101. https://doi.org/10.1134/S0362119718010127

Szlama G., Trexler M., Buday L., Patthy L. K153R polymorphism in myostatin gene increases the rate of promyostatin activation by furin // Febs Letters. 2015. Vol. 589, № 3. P. 295-301. https://doi.org/10.1016/j.febslet.2014.12.011

Walsh F. S., Celeste A. J. Myostatin: a modulator of skeletal-muscle stem cells // Biochemical Society Transactions. 2005. Vol. 33. P. 1513-1517. https://doi.org/10.1042/bst20051513

Zhang Z. L., He J. W., Qin Y. J., Hu Y. Q., Li M., Zhang H., Hu W. W., Liu Y. J., Gu J. M. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families // Osteoporosis International. 2008. Vol. 19, № 1. P. 39-47. https://doi.org/10.1007/s00198-007-0435-8

Elkasrawy M. N., Hamrick M. W. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure // Journal of Musculoskeletal & Neuronal Interactions. 2010. Vol. 10, № 1. P. 56-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753581/

Zhu J., Li Y., Shen W., Qiao C., Ambrosio F., Lavasani M., Nozaki M., Branca M. F., Huard J. Relationships between transforming growth factor-beta 1, myostatin, and decorin - Implications for skeletal muscle fibrosis // Journal of Biological Chemistry. 2007. Vol. 282, № 35. P. 25852-25863. http://dx.doi.org/10.1074/jbc.M704146200

Guo W., Flanagan J., Jasuja R., Kirkland J., Jiang L., Bhasin S. The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways // Journal of Biological Chemistry. 2008. Vol. 283, № 14. P. 9136-9145. https://doi.org/10.1074/jbc.M708968200

Artaza J. N., Bhasin S., Magee T. R., Reisz-Porszasz S., Shen R. Q., Groome N. P., Fareez M. M., Gonzalez-Cadavid N. F. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells // Endocrinology. 2005. Vol. 146, № 8. P. 3547-3557. https://doi.org/10.1210/en.2005-0362

Hamrick M. W., Arounleut P., Kellum E., Cain M., Immel D., Liang L. F. Recombinant Myostatin (GDF-8) Propeptide Enhances the Repair and Regeneration of Both Muscle and Bone in a Model of Deep Penetrant Musculoskeletal Injury // Journal of Trauma-Injury Infection and Critical Care. 2010. Vol. 69, № 3. P. 579-583. https://doi.org/10.1097/ta.0b013e3181c451f4

Thomis M. A. I., Huygens W., Heuninckx S., Chagnon M., Maes H. H. M., Claessens A. L., Vlietinck R., Bouchard C., Beunen G. P. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training // European Journal of Applied Physiology. 2004. Vol. 92, № 3. P. 267-274. https://doi.org/10.1007/s00421-004-1093-6

Santiago C., Ruiz J. R., Rodriguez-Romo G., Fiuza-Luces C., Yvert T., Gonzalez-Freire M., Gomez-Gallego F., Moran M., Lucia A. The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men // Plos One. 2011. Vol. 6, № 1. P. 5. https://doi.org/10.1371/journal.pone.0016323

Garatachea N., Pinos T., Camara Y., Rodriguez-Romo G., Emanuele E., Ricevuti G., Venturini L., Santos-Lozano A., Santiago-Dorrego C., Fiuza-Luces C., Yvert T., Andreu A. L., Lucia A. Association of the K153R polymorphism in the myostatin gene and extreme longevity // Age. 2013. Vol. 35, № 6. P. 2445-2454. https://doi.org/10.1007/s11357-013-9513-3

Schuelke M., Wagner K. R., Stolz L. E., Hubner C., Riebel T., Komen W., Braun T., Tobin J. F., Lee S. J. Brief report - Myostatin mutation associated with gross muscle hypertrophy in a child // New England Journal of Medicine. 2004. Vol. 350, № 26. P. 2682-2688. https://doi.org/10.1056/NEJMoa040933

Catipovic B. Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child // New England Journal of Medicine. 2004. Vol. 351, № 10. P. 1030. https://doi.org/10.1056/NEJM200409023511018

Catipovic B. Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child // New England Journal of Medicine. 2004. Vol. 351, № 10. P. 1031. https://doi.org/10.1056/NEJM200409023511018

Corsi A. M., Ferrucci L., Gozzini A., Tanini A., Brandi M. L. Myostatin polymorphisms and age-related sarcopenia in the Italian population // Journal of the American Geriatrics Society. 2002. Vol. 50, № 8. P. 1463-1463. https://doi.org/10.1046/j.1532-5415.2002.50376.x

Li X., Wang S. J., Tan S. C., Chew P. L., Liu L. H., Wang L., Wen L., Ma L. H. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men // Journal of Sports Sciences. 2014. Vol. 32, № 9. P. 883-891. https://doi.org/10.1080/02640414.2013.865252

Kostek M. A., Angelopoulos T. J., Clarkson P. M., Gordon P. M., Moyna N. M., Visich P. S., Zoeller R. F., Price T. B., Seip R. L., Thompson P. D., Devaney J. M., Gordish-Dressman H., Hoffman E. P., Pescatello L. S. Myostatin and Follistatin Polymorphisms Interact with Muscle Phenotypes and Ethnicity // Medicine and Science in Sports and Exercise. 2009. Vol. 41, № 5. P. 1063-1071. https://doi.org/10.1249/mss.0b013e3181930337

Bhatt S. P., Nigam P., Misra A., Guleria R., Luthra K., Jain S. K., Pasha M. A. Q. Association of the Myostatin Gene with Obesity, Abdominal Obesity and Low Lean Body Mass and in Non-Diabetic Asian Indians in North India // Plos One. 2012. Vol. 7, № 8. https://doi.org/10.1371/journal.pone.0040977

Kim J., Park K., Lee J. Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage // International Journal of Environmental Research and Public Health. 2020. Vol. 17, № 13. P. 8. https://doi.org/10.3390/ijerph17134900

Usac G., Eroglu O., Zileli R. The Evaluation of RS1805086 and RS1805065 Polymorphisms in Mstn Gene and Anthropometric Properties of National and Amateur Arm Wrestlers // International Journal of Morphology. 2020. Vol. 38, № 4. P. 1148-1154. http://dx.doi.org/10.4067/S0717-95022020000401148

Grealy R., Herruer J., Smith C. L. E., Hiller D., Haseler L. J., Griffiths L. R. Evaluation of a 7-Gene Genetic Profile for Athletic Endurance Phenotype in Ironman Championship Triathletes // Plos One. 2015. Vol. 10, № 12. P. 20. https://doi.org/10.1371/journal.pone.0145171

Fernandez-Santander A., Valveny N., Harich N., Kandil M., Luna F., Martin M. A., Rubio J. C., Lucia A., Gaibar M. Polymorphisms influencing muscle phenotypes in North-African and Spanish populations // Annals of Human Biology. 2012. Vol. 39, № 2. P. 166-169. https://doi.org/10.3109/03014460.2012.657243

Juffer P., Furrer R., Gonzalez-Freire M., Santiago C., Verde Z., Serratosa L., Morate F. J., Rubio J. C., Martin M. A., Ruiz J. R., Arenas J., Gomez-Gallego F., Lucia A. Genotype Distributions in Top-level Soccer Players: A Role for ACE? // International Journal of Sports Medicine. 2009. Vol. 30, № 5. P. 387-392. https://doi.org/10.1055/s-0028-1105931

Aksenov M. O., Andryushchenko L. B. Myostatin gene role in strength building process // Theory and Practice of Physical Culture. 2018. №4. P. 71-73. http://www.teoriya.ru/ru/node/7967

Filonzi L., Franchini N., Vaghi M., Chiesa S., Nonnis Marzano F. The potential role of myostatin and neurotransmission genes in elite sport performances // Journal of Biosciences. 2015. Vol. 40, № 3. P. 531-537. https://doi.org/10.1007/s12038-015-9542-4

Ben-Zaken S., Meckel Y., Nemet D., Eliakim A. The combined frequency of IGF and myostatin polymorphism among track & field athletes and swimmers // Growth Hormone & IGF Research. 2017. Vol. 32. P. 29-32. https://doi.org/10.1016/j.ghir.2016.12.002

Khanal P., He L. X., Herbert A. J., Stebbings G. K., Onambele-Pearson G. L., Degens H., Morse C. I., Thomis M., Williams A. G. The Association of Multiple Gene Variants with Ageing Skeletal Muscle Phenotypes in Elderly Women // Genes. 2020. Vol. 11, № 12. P. 18. https://doi.org/10.3390/genes11121459

Peng L. N., Lee W. J., Liu L. K., Lin M. H., Chen L. K. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass // Journal of Cachexia Sarcopenia and Muscle. 2018. Vol. 9, № 4. P. 635-642. https://doi.org/10.1002/jcsm.12302

Seibert M. J., Xue Q. L., Fried L. P., Walston J. D. Polymorphic variation in the human myostatin (GDF-8) gene and association with strength measures in the Women’s Health and Aging Study II cohort // Journal of the American Geriatrics Society. 2001. Vol. 49, № 8. P. 1093-1096. https://doi.org/10.1046/j.1532-5415.2001.49214.x

Tosun Tasar P., Sahin S., Karaman E., Oz A., Ulusoy M. G., Duman S., Berdeli A., Akcicek F. Myostatin Gene Polymorphism in an Elderly Sarcopenic Turkish Population // Genetic Testing and Molecular Biomarkers. 2015. Vol. 19, № 8. P. 457-460. https://doi.org/10.1089/gtmb.2015.0033

Elliott B., Renshaw D., Getting S., Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis // Acta Physiologica. 2012. Vol. 205, № 3. P. 324-340. https://doi.org/10.1111/j.1748-1716.2012.02423.x

McNally E. M. Powerful genes – Myostatin regulation of human muscle mass // New England Journal of Medicine. 2004. Vol. 350, № 26. P. 2642-2644. https://doi.org/10.1056/nejmp048124

Matsakas A., Diel P. The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis // International Journal of Sports Medicine. 2005. Vol. 26, № 2. P. 83-89. https://doi.org/10.1055/s-2004-830451

Aksenov М. О. Theoretical and methodological foundations of building the training process in weightlifting sports, taking into account genetic characteristics. Buryat State University. Ulan-Ude, 2017. 407 p.

Egger M., Smith G. D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test // Bmj-British Medical Journal. 1997. Vol. 315, № 7109. P. 629-634. https://doi.org/10.1136/bmj.315.7109.629

Higgins J. P. T., Thompson S. G. Quantifying heterogeneity in a meta-analysis // Statistics in Medicine. 2002. Vol. 21, № 11. P. 1539-1558. https://doi.org/10.1002/sim.1186

Aksenov M. O. Theoretical and methodological foundations of building the training process in weightlifting sports, taking into account genetic characteristics. Buryat State University. Ulan-Ude, 2017. 407 p.

Aksenov M. O. The basics of building the training process in weightlifting sports, taking into account genetic characteristics. Ulan-Ude: Buryat State University, 2016. 259 p.

Ivey F. M., Roth S. M., Ferrell R. E., Tracy B. L., Lemmer J. T., Hurlbut D. E., Martel G. F., Siegel E. L., Fozard J. L., Metter E. J., Fleg J. L., Hurley B. F. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training // Journals of Gerontology Series a-Biological Sciences and Medical Sciences. 2000. Vol. 55, № 11. P. M641-M648. https://doi.org/10.1093/gerona/55.11.m641


Просмотров аннотации: 398
Загрузок PDF: 441
Опубликован
2021-04-29
Как цитировать
Aksenov, M. (2021). МЕТААНАЛИЗ АССОЦИАЦИИ ПОЛИМОРФИЗМА ГЕНА MSTN RS1805086 С СИЛОВЫМИ ПОКАЗАТЕЛЯМИ СПОРТСМЕНОВ. Siberian Journal of Life Sciences and Agriculture, 13(2), 303-335. https://doi.org/10.12731/2658-6649-2021-13-2-303-335
Раздел
Научные обзоры и сообщения