МИНЕРАЛЬНЫЙ ПРОФИЛЬ КРОВИ У НОВОРОЖДЕННЫХ ТЕЛЯТ С ВНУТРИУТРОБНОЙ ЗАДЕРЖКОЙ РАЗВИТИЯ

  • Anton E. Chernitskiy Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии» https://orcid.org/0000-0001-8953-687X
  • Tatiana S. Tatiana S. Ermilova Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева» https://orcid.org/0000-0002-8251-8545
  • Emil A.O. Salimzade Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева» https://orcid.org/0000-0002-4389-2892
  • Vladimir A. Safonov Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» https://orcid.org/0000-0002-5040-6178
Ключевые слова: внутриутробная задержка развития, крупный рогатый скот, анализ крови, макроэлементы, микроэлементы

Аннотация

Широкое распространение внутриутробной задержки развития эмбриона и плода (ВЗРП) среди крупного рогатого скота и её негативное влияние на постнатальный рост и здоровье потомства угрожают экономической устойчивости животноводства. Телята с внутриутробной задержкой развития часто демонстрируют дефицит веса при рождении, раннюю гибель, нарушения обмена веществ, низкую интенсивность роста и плохое использование корма. Эффективная коррекция этих нарушений невозможна без детального исследования причин, механизмов развития и последствий ВЗРП. В настоящей работе проведен сравнительный анализ содержания макро- и микроэлементов в крови у новорожденных телят симментальской породы с ВЗРП (Группа I, n = 20) и физиологическим течением беременности у их матерей (Группа II, n = 20). Кровь для исследований у телят получали в 1-суточном возрасте, перед 4-м кормлением молозивом. Методом атомно-адсорбционной спектрометрии (AA6300, Shimadzu, Япония) в образцах сыворотки крови исследовали содержание натрия, калия, кальция и магния, в образцах цельной крови – содержание железа, меди, цинка, марганца, кобальта и селена. У телят Группы I установлено повышенное содержание в сыворотке крови калия (на 6.7%, P = 0.022) и магния (на 6.3%, P = 0.004) и пониженное натрия (на 4.3%, P = 0.005), пониженное содержание в цельной крови селена (на 41.0%, P = 0.0001), меди (на 23.6%, P = 0.0001) и марганца (на 23.4%, P = 0.005) по сравнению с животными Группы II. Содержание в крови других исследованных минералов достоверно не различалось между группами. Анализируются возможные причины и последствия выявленных нарушений минерального профиля крови у новорожденных телят с ВЗРП.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Anton E. Chernitskiy, Федеральное государственное бюджетное научное учреждение «Всероссийский научно-исследовательский ветеринарный институт патологии, фармакологии и терапии»

старший научный сотрудник сектора болезней органов воспроизводства крупного рогатого скота отдела экспериментальной терапии, доктор биологических наук

Tatiana S. Tatiana S. Ermilova, Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева»

ассистент кафедры ветеринарной медицины

Emil A.O. Salimzade, Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В.Н. Татищева»

аспирант кафедры ветеринарной медицины

Vladimir A. Safonov, Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева»

заведующий Совместной научно-исследовательской лабораторией фундаментальных и прикладных проблем биогеохимии и ветеринарной медицины Волго-Каспийского региона АГУ им. В.Н. Татищева и Института геохимии и аналитической химии им. В.И. Вернадского Российской академии наук, доктор биологических наук

Литература

References

Alekhin Yu.N., Zhukov M.S. Issues of Legal Regulation in Veterinary Medicine, 2019, no. 3, pp. 207-210. https://doi.org/10.17238/issn2072-6023.2019.3.207

Butko V.A., Lozovaya E.G., Mikhalev V.I. Bulletin of Veterinary Pharmacology, 2020, no. 2(11), pp. 177-190. https://doi.org/10.17238/issn2541-8203.2020.2.177

Kovalsky V.V. Geochemical Ecology. Moscow: Nauka, 1974, 300 p.

Nezhdanov A.G., Mikhalev V.I., Chusova G.G., Papin N.E., Chernitskiy A.E., Lozovaya E.G. Sel’skokhozyaistvennaya Biologiya, 2016, vol. 51, no. 2, pp. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230rus

Samokhin V.T., Shushlebin V.I., Retsky M.I., Zolotarev A.I. Veterinariya, 2011, no. 12, pp. 11-13.

Safonov V.A., Mikhalev V.I, Chernitskiy A.E. Sel’skokhozyaistvennaya Biologiya, 2018, vol. 53, no. 4, pp. 831-841. https://doi.org/10.15389/agrobiology.2018.4.831rus

Chernitskiy A.E., Retsky M.I. Zolotarev A.I. Sel’skokhozyaistvennaya Biologiya, 2013, no. 4, pp. 99-104. https://doi.org/10.15389/agrobiology.2013.4.99rus

Chernitskiy A.E., Retsky M.I., Zolotarev A.I., Efanova L.I., Bratchenko E.V. Sel’skokhozyaistvennaya Biologiya, 2013, no. 6, pp. 94-99. https://doi.org/10.15389/agrobiology.2013.6.94rus

Azzam S.M., Kinder J.E., Nielsen M.K., Werth L.A., Gregory K.E., Cundiff L.V., Koch R.M. Environmental effects on neonatal mortality of beef calves. Journal of Animal Science, 1993, vol. 71, no. 2, pp. 282-290. https://doi.org/10.2527/1993.712282x

Bouda J., Jagoš P. Biochemical and hematological reference values in calves and their significance for health control. Acta Veterinaria Brno, 1984, vol. 53, no. 3-4, pp. 137-142. https://doi.org/10.2754/avb198453030137

Buczinski S.M., Fecteau G., Lefebvre R.C., Smith L.C. Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives arising from comparative medicine. The Canadian Veterinary Journal, 2007, vol. 48, no. 2, pp. 178-183.

Chen Y.H., Zhao M., Chen X., Zhang Y., Wang H., Huang Y.Y., Wang Z., Zhang Z.H., Zhang C., Xu D.X. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. The Journal of Immunology, 2012, vol. 183, no. 1, pp. 454-463. https://doi.org/10.4049/jimmunol.1103579

Chernitskiy A.E., Safonov V.A. Oxidative stress in newborn calves with intrauterine growth retardation is associated with a deficiency of selenium and copper. Animal Reproduction, 2018, vol. 15, no. S1, pp. 1053-1053. http://dx.doi.org/10.13140/RG.2.2.21457.38240

Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle. Journal of Mechanics of Continua and Mathematical Sciences, 2020, no. S10, pp. 154-170. https://doi.org/10.26782/jmcms.spl.10/2020.06.00013

Chernitskiy A., Shabunin S., Safonov V. Calcium-magnesium ratio in the serum of newborn calves correlates with the level of their vitality. Advances in Animal Biosciences, 2019, vol. 10, no. 3, pp. 618-618. https://doi.org/10.1017/S2040470019000037

Coskun A., Aydogdu U., Guzelbektes H., Sen I. The levels of trace elements and macrominerals in calves with sepsis. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2020, vol. 26, no. 3, pp. 351-355. https://doi.org/10.9775/kvfd.2019.23187

Egli C.P., Blum J.W. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow-calf operation. Journal of Veterinary Medicine: Series A, 1998, vol. 45, no. 1-10, pp. 99-118. https://doi.org/10.1111/j.1439-0442.1998.tb00806.x

Fanni D., Gerosa C., Nurchi V.M., Manchia M., Saba L., Coghe F., Crisponi G., Gibo Y., Van Eyken P., Fanos V., Faa G. The role of magnesium in pregnancy and in fetal programming of adult diseases. Biological Trace Element Research, 2021, vol. 199, no. 10, pp. 3647-3657. https://doi.org/10.1007/s12011-020-02513-0

Georgievskii V.I., Annenkov B.N., Samokhin V.T. Mineral Nutrition of Animals. London: Butterworths, 1982, 475 p.

Glover I.D., Barrett D., Reyher K. Little association between birth weight and health of preweaned dairy calves. Veterinary Record, 2019, vol. 184, no. 15, 477. https://doi.org/10.1136/vr.105062

Greenwood P.L., Bell A.W. Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics of North America: Food Animal Practice, 2019, vol. 35, no. 2, pp. 303-319. https://doi.org/10.1016/j.cvfa.2019.02.008

Greenwood P.L., Café L.M. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production. Animal, 2007, vol. 1, no. 9, pp. 1283-1296. https://doi.org/10.1017/S175173110700050X

Greenwood P.L., Café L.M., Hearnshaw H, Hennessy D.W. Consequences of nutrition and growth retardation early in life for growth and composition of cattle and eating quality of beef. Recent Advances in Animal Nutrition in Australia, 2005, vol. 15, pp. 183-195.

Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 2020, vol. 10, no. 8, 1176. https://doi.org/10.3390/biom10081176

Hicks Z.M., Yates D.T. Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock. Frontiers in Animal Science, 2021, vol. 2, 761421. https://doi.org/10.3389/fanim.2021.761421

Hracsko Z., Orvos H., Novak Z., Pal A., Varga I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Report, 2008, vol. 13, no. 1, pp. 11-16. https://doi.org/10.1179/135100008X259097

Jawor P., Mee J.F., Stefaniak T. Role of infection and immunity in bovine perinatal mortality: Part 1. Causes and current diagnostic approaches. Animals, 2021, vol. 11, no. 7, 2102. https://doi.org/10.3390/ani11072102

Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Veterinary World, 2020, vol. 13, no. 5, pp. 987-995. https://doi.org/10.14202/vetworld.2020.987-995

Klinkon M., Ježek J. Values of blood variables in calves. In: A Bird’s-Eye View of Veterinary Medicine [C. C. Perez-Marin (ed.)]. Rijeka: InTech, 2012, pp. 301-320.

Lewicka I., Kocyłowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role – Literature review. Ginekologia Polska, 2017, vol. 88, no. 9, pp. 509-514. https://doi.org/10.5603/gp.a2017.0093

McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes. Nutrients, 2019, vol. 11, no. 1, 73. https://doi.org/10.3390/nu11010073

Mehdi Y, Dufrasne I. Selenium in cattle: a review. Molecules, 2016, vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545

Mikhalev V., Shabunin S., Safonov V., Chernitskiy A. Metabolic status of newborn calves with intrauterine growth retardation. Reproduction in Domestic Animals, 2018, vol. 53, no. S2, pp. 168-168. https://doi.org/10.1111/rda.13272

Mohri M., Sharifi K., Eidi S. Hematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults. Research in Veterinary Science, 2007, vol. 83, no. 1, pp. 30-39. https://doi.org/10.1016/j.rvsc.2006.10.017

Neve J. Clinical implications of trace elements in endocrinology. Biological Trace Element Research, 1992, vol. 32, no. 1, pp. 173-185. https://doi.org/10.1007/BF02784602

Nezhdanov A., Shabunin S., Mikhalev V., Klimov N., Chernitskiy A. Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows. Turkish Journal of Veterinary and Animal Sciences, 2014, vol. 38, no. 6, pp. 675-680. https://doi.org/10.3906/vet-1405-12

Ogata Y., Nakao T., Takahashi K., Abe H., Misawa T., Urushiyama Y., Sakai J. Intrauterine growth retardation as a cause of perinatal mortality in Japanese black beef calves. Journal of Veterinary Medicine Series A, 1999, vol. 46, no. 6, pp. 327-334. https://doi.org/10.1046/j.1439-0442.1999.00221.x

Pavlata L., Pechová A., Dvořák R. Microelements in colostrum and blood of cows and their calves during colostral nutrition. Acta Veterinaria Brno, 2004, vol. 73, no. 4, pp. 421-429. https://doi.org/10.2754/avb200473040421

Retskii M.I., Shakhov A.G., Filatov N.V., Zolotarev A.I., Bliznetsova G.N., Mas’yanov Yu.N., Ermolova T.G. Role of metabolic status in development of omphalitis in neonatal calves. Russian Agricultural Sciences, 2007, vol. 33, no. 4, pp. 271-273. https://doi.org/10.3103/S1068367407040180

Safonov V. Comparison of LPO-AOS indices and biochemical composition of animal blood in biogeochemical provinces with different levels of selenium. Biological Trace Element Research, 2022, vol. 200, no. 5, pp. 2055-2061. https://doi.org/10.1007/s12011-021-02825-9

Safonov V.A. Biological role of selenium and correction effects of its content in the organism of animals. Geochemistry International, 2018, vol. 56, no. 10, pp. 1046-1050. https://doi.org/10.1134/s0016702918100105

Safonov V., Chernitskiy A. Trace elements deficiency in dairy cows in the biogeochemical province of the Republic of Belarus and biological effects of its correction. In: New Prospects in Environmental Geosciences and Hydrogeosciences [H. Chenchouni, H. I. Chaminé, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, 2022, pp. 185-187https://doi.org/10.1007/978-3-030-72543-3_41

Safonov V., Ermakov V., Danilova V., Yakimenko V. Relationship between blood superoxide dismutase activity and zinc, copper, glutathione and metallothioneines concentrations in calves. Biomath, 2021, vol. 10, no. 2, 2111247. https://doi.org/10.11145/j.biomath.2021.11.247

Shabunin S.V., Nezhdanov A.G., Mikhalev V.I., Lozovaya E.G., Chernitskiy A.E. Prognostic value of endogenous intoxication and oxidative stress indices in early embryogenesis in cows. Russian Agricultural Sciences, 2016, vol. 42, no. 1, pp. 101-104. https://doi.org/10.3103/S1068367416010183

Shabunin S., Mikhalev V., Nezhdanov A., Safonov V., Parshin P., Anipchenko P. PSVIII-16 Interferon-TAU in the pathogenesis and prevention of intrauterine growth restriction and embryonic death in dairy cows. Journal of Animal Science, 2020, vol. 98, no. S4, pp. 254-255. https://doi.org/10.1093/jas/skaa278.459

Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Diselementosis as a risk factor of embryo loss in lactating cows. Turkish Journal of Veterinary and Animal Sciences, 2017, vol. 41, no. 4, pp. 453-459. http://dx.doi.org/10.3906/vet-1609-76

Steinhardt M., Gollnast I., Langanke M., Bünger U., Kutschke J. Klinischchemische blutwerte bei neugeborenen Kälbern. Tierärztliche Praxis, 1993, vol. 21, no. 4, pp. 295-301.

Tao S., Monteiro A.P., Thompson I.M., Hayen M.J., Dahl G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 2012, vol. 95, no. 12, pp. 7128-7136. https://doi.org/10.3168/jds.2012-5697

Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 2020, vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404

Williams R.J. Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium. Quarterly Reviews. Chemical Society, 1970, vol. 24, no. 3, pp. 331-365. https://doi.org/10.1039/QR9702400331

Wu G., Bazer F.W., Wallace J.M., Spencer, T.E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science, 2006, vol. 84, no. 9, pp. 2316-2337. https://doi.org/10.2527/jas.2006-156

Список литературы

Алехин Ю.Н., Жуков М.С. Минеральный состав крови у новорожденных телят с разной массой тела при рождении // Вопросы нормативно-правового регулирования в ветеринарии. 2019. № 3. С. 207-210. https://doi.org/10.17238/issn2072-6023.2019.3.207

Бутко В.А., Лозовая Е.Г., Михалев В.И. Клинико-эхографические маркеры диагностики нарушений раннего эмбриогенеза у коров // Ветеринарный фармакологический вестник. 2020. № 2(11). С. 177-190. https://doi.org/10.17238/issn2541-8203.2020.2.177

Ковальский В.В. Геохимическая экология. Москва: Наука, 1974. 300 с.

Нежданов А.Г., Михалев В.И., Чусова Г.Г., Папин Н.Е., Черницкий А.Е., Лозовая Е.Г. Метаболический статус коров при задержке внутриутробного развития эмбриона и плода // Сельскохозяйственная биология. 2016. Т. 51, № 2. С. 230-237. https://doi.org/10.15389/agrobiology.2016.2.230rus

Самохин В.Т., Шушлебин В.И., Рецкий М.И., Золотарев А.И. Роль микроэлементного статуса в заболеваемости новорожденных телят колибактериозом // Ветеринария. 2011. № 12. С. 11-13.

Сафонов В.А., Михалев В.И., Черницкий А.Е. Антиоксидантный статус и функциональное состояние дыхательной системы у новорожденных телят с внутриутробной задержкой развития // Сельскохозяйственная биология. 2018. Т. 53. № 4. С. 831-841. https://doi.org/10.15389/agrobiology.2018.4.831rus

Черницкий А.Е., Рецкий М.И., Золотарев А.И. Функциональное становление дыхательной системы у новорожденных телят с разной жизнеспособностью // Сельскохозяйственная биология. 2013. № 4. С. 99-104. https://doi.org/10.15389/agrobiology.2013.4.99rus

Черницкий А.Е., Рецкий М.И., Золотарев А.И., Ефанова Л.И., Братченко Э.В. Связь колострального иммунитета и биохимического статуса у новорожденных телят в первые дни жизни // Сельскохозяйственная биология. 2013. № 6. С. 94-99. https://doi.org/10.15389/agrobiology.2013.6.94rus

Azzam S.M., Kinder J.E., Nielsen M.K., Werth L.A., Gregory K.E., Cundiff L.V., Koch R.M. Environmental effects on neonatal mortality of beef calves // Journal of Animal Science. 1993. Vol. 71, no. 2. P. 282-290. https://doi.org/10.2527/1993.712282x

Bouda J., Jagoš P. Biochemical and hematological reference values in calves and their significance for health control // Acta Veterinaria Brno. 1984. Vol. 53, no. 3-4. P. 137-142. https://doi.org/10.2754/avb198453030137

Buczinski S.M., Fecteau G., Lefebvre R.C., Smith L.C. Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives arising from comparative medicine // The Canadian Veterinary Journal. 2007. Vol. 48, no. 2. P. 178-183.

Chen Y.H., Zhao M., Chen X., Zhang Y., Wang H., Huang Y.Y., Wang Z., Zhang Z.H., Zhang C., Xu D.X. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect // The Journal of Immunology. 2012. Vol. 183, no. 1. P. 454-463. https://doi.org/10.4049/jimmunol.1103579

Chernitskiy A.E., Safonov V.A. Oxidative stress in newborn calves with intrauterine growth retardation is associated with a deficiency of selenium and copper // Animal Reproduction. 2018. Vol. 15, no. S1. P. 1053-1053. http://dx.doi.org/10.13140/RG.2.2.21457.38240

Chernitskiy A.E., Skogoreva T.S., Safonov V.A. Study of interrelations of the bioelement status of mother and fetus at cattle // Journal of Mechanics of Continua and Mathematical Sciences. 2020. No. S10. P. 154-170. https://doi.org/10.26782/jmcms.spl.10/2020.06.00013

Chernitskiy A., Shabunin S., Safonov V. Calcium-magnesium ratio in the serum of newborn calves correlates with the level of their vitality // Advances in Animal Biosciences. 2019. Vol. 10, no. 3. P. 618-618. https://doi.org/10.1017/S2040470019000037

Coskun A., Aydogdu U., Guzelbektes H., Sen I. The levels of trace elements and macrominerals in calves with sepsis // Kafkas Universitesi Veteriner Fakultesi Dergisi. 2020. Vol. 26, no. 3. P. 351-355. https://doi.org/10.9775/kvfd.2019.23187

Egli C.P., Blum J.W. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow-calf operation // Journal of Veterinary Medicine: Series A. 1998. Vol. 45, no. 1-10. P. 99-118. https://doi.org/10.1111/j.1439-0442.1998.tb00806.x

Fanni D., Gerosa C., Nurchi V.M., Manchia M., Saba L., Coghe F., Crisponi G., Gibo Y., Van Eyken P., Fanos V., Faa G. The role of magnesium in pregnancy and in fetal programming of adult diseases // Biological Trace Element Research. 2021. Vol. 199, no. 10. P. 3647-3657. https://doi.org/10.1007/s12011-020-02513-0

Georgievskii V.I., Annenkov B.N., Samokhin V.T. Mineral Nutrition of Animals. London: Butterworths, 1982. 475 p.

Glover I.D., Barrett D., Reyher K. Little association between birth weight and health of preweaned dairy calves // Veterinary Record. 2019. Vol. 184, no. 15, 477. https://doi.org/10.1136/vr.105062

Greenwood P.L., Bell A.W. Developmental programming and growth of livestock tissues for meat production // Veterinary Clinics of North America: Food Animal Practice. 2019. Vol. 35, no. 2. P. 303-319. https://doi.org/10.1016/j.cvfa.2019.02.008

Greenwood P.L., Café L.M. Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production // Animal. 2007. Vol. 1, no. 9. P. 1283-1296. https://doi.org/10.1017/S175173110700050X

Greenwood P.L., Café L.M., Hearnshaw H, Hennessy D.W. Consequences of nutrition and growth retardation early in life for growth and composition of cattle and eating quality of beef // Recent Advances in Animal Nutrition in Australia. 2005. Vol. 15. P. 183-195.

Grzeszczak K., Kwiatkowski S., Kosik-Bogacka D. The role of Fe, Zn, and Cu in pregnancy // Biomolecules. 2020. Vol. 10, no. 8, 1176. https://doi.org/10.3390/biom10081176

Hicks Z.M., Yates D.T. Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock // Frontiers in Animal Science. 2021. Vol. 2, 761421. https://doi.org/10.3389/fanim.2021.761421

Hracsko Z., Orvos H., Novak Z., Pal A., Varga I.S. Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation // Redox Report. 2008. Vol. 13, no. 1. P. 11-16. https://doi.org/10.1179/135100008X259097

Jawor P., Mee J.F., Stefaniak T. Role of infection and immunity in bovine perinatal mortality: Part 1. Causes and current diagnostic approaches // Animals. 2021. Vol. 11, no. 7, 2102. https://doi.org/10.3390/ani11072102

Kalaeva E., Kalaev V., Chernitskiy A., Alhamed M., Safonov V. Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis // Veterinary World. 2020. Vol. 13, no. 5. P. 987-995. https://doi.org/10.14202/vetworld.2020.987-995

Klinkon M., Ježek J. Values of blood variables in calves // A Bird’s-Eye View of Veterinary Medicine [C. C. Perez-Marin (ed.)]. Rijeka: InTech, 2012. P. 301-320.

Lewicka I., Kocyłowski R., Grzesiak M., Gaj Z., Oszukowski P., Suliburska J. Selected trace elements concentrations in pregnancy and their possible role – Literature review // Ginekologia Polska. 2017. Vol. 88, no. 9. P. 509-514. https://doi.org/10.5603/gp.a2017.0093

McKeating D.R., Fisher J.J., Perkins A.V. Elemental metabolomics and pregnancy outcomes // Nutrients. 2019. Vol. 11, no. 1, 73. https://doi.org/10.3390/nu11010073

Mehdi Y, Dufrasne I. Selenium in cattle: a review // Molecules. 2016. Vol. 21, no. 4, 545. https://doi.org/10.3390/molecules21040545

Mikhalev V., Shabunin S., Safonov V., Chernitskiy A. Metabolic status of newborn calves with intrauterine growth retardation // Reproduction in Domestic Animals. 2018. Vol. 53, no. S2. P. 168-168. https://doi.org/10.1111/rda.13272

Mohri M., Sharifi K., Eidi S. Hematology and serum biochemistry of Holstein dairy calves: age related changes and comparison with blood composition in adults // Research in Veterinary Science. 2007. Vol. 83, no. 1. P. 30-39. https://doi.org/10.1016/j.rvsc.2006.10.017

Neve J. Clinical implications of trace elements in endocrinology // Biological Trace Element Research. 1992. Vol. 32, no. 1. P. 173-185. https://doi.org/10.1007/BF02784602

Nezhdanov A., Shabunin S., Mikhalev V., Klimov N., Chernitskiy A. Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows // Turkish Journal of Veterinary and Animal Sciences. 2014. Vol. 38, no. 6. P. 675-680. https://doi.org/10.3906/vet-1405-12

Ogata Y., Nakao T., Takahashi K., Abe H., Misawa T., Urushiyama Y., Sakai J. Intrauterine growth retardation as a cause of perinatal mortality in Japanese black beef calves // Journal of Veterinary Medicine Series A. 1999. Vol. 46, no. 6. P. 327-334. https://doi.org/10.1046/j.1439-0442.1999.00221.x

Pavlata L., Pechová A., Dvořák R. Microelements in colostrum and blood of cows and their calves during colostral nutrition // Acta Veterinaria Brno. 2004, Vol. 73, no. 4. P. 421-429. https://doi.org/10.2754/avb200473040421

Retskii M.I., Shakhov A.G., Filatov N.V., Zolotarev A.I., Bliznetsova G.N., Mas’yanov Yu.N., Ermolova T.G. Role of metabolic status in development of omphalitis in neonatal calves // Russian Agricultural Sciences. 2007. Vol. 33, no. 4. P. 271-273. https://doi.org/10.3103/S1068367407040180

Safonov V. Comparison of LPO-AOS indices and biochemical composition of animal blood in biogeochemical provinces with different levels of selenium // Biological Trace Element Research. 2022. Vol. 200, no. 5. P. 2055-2061. https://doi.org/10.1007/s12011-021-02825-9

Safonov V.A. Biological role of selenium and correction effects of its content in the organism of animals // Geochemistry International. 2018. Vol. 56, no. 10. P. 1046-1050. https://doi.org/10.1134/s0016702918100105

Safonov V., Chernitskiy A. Trace elements deficiency in dairy cows in the biogeochemical province of the Republic of Belarus and biological effects of its correction // New Prospects in Environmental Geosciences and Hydrogeosciences [H. Chenchouni, H. I. Chaminé, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, 2022. P. 185-187https://doi.org/10.1007/978-3-030-72543-3_41

Safonov V., Ermakov V., Danilova V., Yakimenko V. Relationship between blood superoxide dismutase activity and zinc, copper, glutathione and metallothioneines concentrations in calves // Biomath. 2021. Vol. 10, no. 2, 2111247. https://doi.org/10.11145/j.biomath.2021.11.247

Shabunin S.V., Nezhdanov A.G., Mikhalev V.I., Lozovaya E.G., Chernitskiy A.E. Prognostic value of endogenous intoxication and oxidative stress indices in early embryogenesis in cows // Russian Agricultural Sciences. 2016. Vol. 42, no. 1. P. 101-104. https://doi.org/10.3103/S1068367416010183

Shabunin S., Mikhalev V., Nezhdanov A., Safonov V., Parshin P., Anipchenko P. PSVIII-16 Interferon-TAU in the pathogenesis and prevention of intrauterine growth restriction and embryonic death in dairy cows // Journal of Animal Science. 2020. Vol. 98, no. S4. P. 254-255. https://doi.org/10.1093/jas/skaa278.459

Shabunin S., Nezhdanov A., Mikhalev V., Lozovaya E., Chernitskiy A. Diselementosis as a risk factor of embryo loss in lactating cows // Turkish Journal of Veterinary and Animal Sciences. 2017. Vol. 41, no. 4. P. 453-459. http://dx.doi.org/10.3906/vet-1609-76

Steinhardt M., Gollnast I., Langanke M., Bünger U., Kutschke J. Klinischchemische blutwerte bei neugeborenen Kälbern // Tierärztliche Praxis. 1993. Vol. 21, no. 4. P. 295-301.

Tao S., Monteiro A.P., Thompson I.M., Hayen M.J., Dahl G.E. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves // Journal of Dairy Science. 2012. Vol. 95, no. 12. P. 7128-7136. https://doi.org/10.3168/jds.2012-5697

Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health // Animals. 2020. Vol. 10, no. 12, 2404. https://doi.org/10.3390/ani10122404

Williams R.J. Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium // Quarterly Reviews. Chemical Society. 1970. Vol. 24, no. 3. P. 331-365. https://doi.org/10.1039/QR9702400331

Wu G., Bazer F.W., Wallace J.M., Spencer, T.E. Board-invited review: intrauterine growth retardation: implications for the animal sciences // Journal of Animal Science. 2006. Vol. 84, no. 9. P. 2316-2337. https://doi.org/10.2527/jas.2006-156


Просмотров аннотации: 273
Загрузок PDF: 201
Опубликован
2022-04-30
Как цитировать
Chernitskiy, A., Tatiana S. Ermilova, T., Salimzade, E., & Safonov, V. (2022). МИНЕРАЛЬНЫЙ ПРОФИЛЬ КРОВИ У НОВОРОЖДЕННЫХ ТЕЛЯТ С ВНУТРИУТРОБНОЙ ЗАДЕРЖКОЙ РАЗВИТИЯ. Siberian Journal of Life Sciences and Agriculture, 14(2), 52-70. https://doi.org/10.12731/2658-6649-2022-14-2-52-70
Раздел
Биохимия, генетика и молекулярная биология