ИЗМЕНЕНИЯ В СОДЕРЖАНИИ ВОДОРАСТВОРИМЫХ САХАРОВ В ХВОЕ СОСНЫ ОБЫКНОВЕННОЙ И ЕЛИ СИБИРСКОЙ, ПРОИЗРАСТАЮЩИХ НА ЮГЕ ВОСТОЧНОЙ СИБИРИ

  • Natalya E. Korotaeva Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН) https://orcid.org/0000-0003-4236-389X
  • Maria V. Oskorbina Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН) https://orcid.org/0000-0002-1100-9743
  • Elena N. Gritsai Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский национальный исследовательский технический университет» (ФГБОУ ВО «ИРНИТУ») https://orcid.org/0000-0002-4741-883X
  • Gennadii B. Borovskii Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН) https://orcid.org/0000-0002-5089-5311
Ключевые слова: Pinus sylvestris L., Picea obovata Ledeb., юг Восточной Сибири, хвоя, водорастворимые сахара, сезонные изменения

Аннотация

Распространенные на юге Восточной Сибири виды сосна обыкновенная Pinus sylvestris L. и ель сибирская Picea obovata Ledeb. отличаются друг от друга по своим экофизиологическим характеристикам. Сосна более теплолюбива и засухоустойчива, ель более влаголюбива и лучше переносит охлаждение. В различные периоды года оба вида накапливают в хвое водорастворимые сахара (ВРС), которые являются одним из факторов холодо- и засухоустойчивости хвои. На уровень накопления ВРС в хвое могут влиять как видовые, так и территориальные факторы, связанные с особенностями климата региона произрастания. В исследовании впервые на протяжении двух годичных циклов сравнивали изменение содержания ВРС у сосны обыкновенной и ели сибирской, произрастающих на юге Восточной Сибири. В период наблюдения зима 2015-2016 была морознее, чем зима 2016-2017, а период роста в 2015 был более теплым и влажным, чем аналогичный период в 2016. Установлено, что и в более благоприятных, и в менее благоприятных для физиологической активности условиях содержание ВРС в хвое сосны меньше подвергалось колебаниям и было почти всегда выше, чем в хвое ели, за исключением ноября-февраля 2015-2016 (когда содержание ВРС в хвое деревьев двух видов было одинаковым) и марта-апреля 2016 (когда оно было выше в хвое ели). Возможно, способность сосны обыкновенной поддерживать более высокий запас ВРС в хвое является одним из механизмов, который позволяет деревьям этого вида в экстремальных условиях юга Восточной Сибири успешно конкурировать с елью и занимать более обширные территории.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Natalya E. Korotaeva, Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН)

к.б.н., старший научный сотрудник

Maria V. Oskorbina, Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН)

к.б.н., старший научный сотрудник

Elena N. Gritsai, Федеральное государственное бюджетное образовательное учреждение высшего образования «Иркутский национальный исследовательский технический университет» (ФГБОУ ВО «ИРНИТУ»)

старший преподаватель

Gennadii B. Borovskii, Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук (СИФИБР СО РАН)

д.б.н., главный научный сотрудник

Литература

References

Gamayunova А.Yu., Korotaeva N.Е., Borovskii G.B. Sbornik materialov Vserossijskoj nauchnoj konferencii “Mehanizmy ustojchivosti i adaptacii biologicheskih sistem k prirodnym i tehnogennym faktoram”. [Proceedings of the All-Russian scientific conference “Mechanisms of stability and adaptation of biological systems to natural and man-made factors”]. Kirov, 2015, pp. 130-133

Ivanova M.V., Suvorova G.G. Struktura i funktsiya fotosinteticheskogo apparata khvoynykh v usloviyakh yuga Vostochnoy Sibiri [The structure and function of the photosynthetic apparatus of conifers in the conditions of the South of Eastern Siberia]. Irkutsk: Publishing House of the Institute of Geography of the SB RAS, 2014, 102 p.

Zagirova S.V. Struktura assimilyatsionnogo apparata i CO2-gazoobmen u khvoynykh [The structure of the assimilation apparatus and CO2-gas exchange in conifers]. Ekaterinburg: UB RAS, 1999, 108 p.

Vliyanie strukturnykh osobennostey fotosinteticheskogo apparata i klimaticheskikh usloviy na fotosinteticheskuyu produktivnost’ khvoynykh [Influence of structural features of photosynthetic apparatus and climatic conditions on photosynthetic productivity of conifers]. Oskobina M.V., Suvorova G.G., Kopytova L.D., Oskolkov V.A., Yan’kova L.S. Vestnik KrasGAU [Bulletin of KrasGAU], 2010. № 5. pp. 28–34

Suvorova G.G. Fotosintez khvoynykh derev’ev v usloviyakh Sibiri [Photosynthesis of coniferous trees under the Siberian conditions]. Novosibirsk: Academic publishing house «Geo», 2009, 194 p.

Shimanyuk A.P. Dendrologiya [Dendrology]. Moscow: Forest industry, 1974, 264 p.

Carpenter J.F., Hand S.C., Crowe L.M., Crowe J.H. Cryoprotection of phosphofructokinase with organic solutes: Characterization of enhanced protection in the presence of divalent cations. Archives of biochemistry and biophysics, 1986, vol. 250, pp. 505–512. https://doi.org/10.1016/0003-9861(86)90755-1

Impact of warming and drought on carbon balance related to wood formation in black spruce / Deslauriers A., Beaulieu M., Balducci L., Giovannelli A., Gagnon M. J., Rossi S. Annals of Botany, 2014, vol. 114, pp. 335–345. https://doi.org/10.1093/aob/mcu111

Cold acclimation and deacclimation in wild blueberry: Direct and indirect influence of environmental factors and non-structural carbohydrates / Deslauriers A., Garcia L., Charrier G.; Buttò V., Pichette A., Paré, M. Agricultural and Forest Meteorology, 2021, pp. 301–302. https://doi.org/10.1016/j.agrformet.2021.108349

Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses / Dos Santos T.B., Budzinski I.G.F., Marur C.J., Petkowicz C.L.O., Pereira L.F.P., Vieira L.G.E. Plant Physiology and Biochemistry, 2011, vol. 49, pp. 441–448. https://doi.org/10.1101/2020.07.21.212928

Dreywood R. Qualitative Test for Carbohydrate Material. Industrial and Engineering Chemistry Analytical Edition, 1946, vol. 18, pp. 499-499. https://doi.org/10.1021/i560156a015

The Effects of Water Stress on Plant Respiration / Flexas J., Galmes,J., Ribas-Carbo M., Medrano H. Plant Respiration. Advances in Photosynthesis and Respiration [eds. Lambers H., Ribas-Carbo M.] Dordrecht: Springer, 2005. https://doi.org/10.1007/1-4020-3589-6_6

Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. International journal of molecular sciences, 2019, no. 20, Art 5411. https://doi.org/10.3390/ijms20215411

Hansen J., Beck E. Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees, 1994, no. 8, pp. 172–182. https://doi.org/10.1007/BF00196844

Hinesley L.E., Pharr, D.M., Snelling L.K., Funderburk S.R. Foliar Raffinose and Sucrose in Four Conifer Species: Relationship to Seasonal Temperature. Journal of the American Society for Horticultural Science, 1992, vol. 117, pp. 852-855. https://doi.org/10.21273/JASHS.117.5.852

Huner N.P., Öquist G., Sarhan F. Energy balance and acclimation to light and cold. Trends in Plant Science, 1998, vol. 3, pp. 224-230. https://doi.org/10.1016/S1360-1385(98)01248-5

Korotaeva, N.E., Ivanova, M.V., Suvorova, G.G., Borovskiy, G.B. The impact of the environmental factors on the photosynthetic activity of common pine The impact of the environmental factors on the photosynthetic activity of common pine (Pinus sylvestris) in spring and in autumn in the region of Eastern Siberia. Journal of Forestry Research, 2017, vol. 29, pp. 1465-1473. https://doi.org/10.1007/s11676-017-0582-5

Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles / Korotaeva N., Romanenko A., Suvorova G., Ivanova M., Lomovatskaya L., Borovskii G., Voinikov V. Photosynthesis Research, 2015, vol. 124, pp. 159-169. https://doi.org/10.1007/s11120-015-0112-2

Intraspecies differences in cold hardiness, carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation / Lee J.H., Yu D.J., Kim S.J., Choi D., Lee H.J. Tree Physiology, 2012, vol. 32, pp. 1533–1540. https://doi.org/10.1093/treephys/tps102

Li M., Hoch G., Körner C. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees, 2002, no. 16, pp. 331–337. https://doi.org/10.1007/s00468-002-0172-8

Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe / Lintunen A., PaljakkaT., Jyske T., Peltoniemi M., Sterck F., von Arx G., Cochard H., Copini P., Caldeira M. C., Delzon S., Gebauer R., Grönlund L., Kiorapostolou N., Lechthaler S., Lobo-do-Vale R., Peters R. L., Petit G., Prendin A. L., Salmon Y., Hölttä T. Frontiers in Plant Science, 2016, no. 7, Art 726. https://doi.org/10.3389/fpls.2016.00726

Liu L.-X., Xu S.-M.,Wang D.-L.,Woo K. Accumulation of pinitol and other soluble sugars inwater-stressed phyllodes of tropical Acacia auriculiformis in northern Australia. New Zealand Journal of Botany, 2008, vol. 46, pp. 119–126. https://doi.org/10.1080/00288250809509759

Nishizawa-Yokoi A., YabutaY., Shigeoka S. The contribution of carbohy-drates including raffinose family oligosaccharides and sugar alcohols to pro-tection of plant cells from oxidative damage. Plant Signaling and Behavior, 2008, vol. 3, pp. 1016–1018. https://doi.org/10.4161/psb.6738

Ögren E. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiology, 1997, vol. 17, P. 47-51. https://doi.org/10.1093/treephys/17.1.47

Ögren E., Nilsson T., Sundblad L. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant Cell and Environment, 1997, vol. 20, pp. 247–253. https://doi.org/10.1046/j.1365-3040.1997.d01-56.x

Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence / Regier N., Streb S., Cocozza C., Schaub M., Cherubini P., Zeeman S.C., Frey B. Plant Cell and Environment, 2009, vol. 32, pp. 1724-1736. https://doi.org/10.1111/j.1365-3040.2009.02030.x

Robakidze E.A., Bobkova K.S. Carbohydrate Accumulation in Siberian Spruce Needles of Various Ages. Russian Journal of Plant Physiology, 2003, vol. 50, pp. 509–515. https://doi.org/10.1023/A:1024724907949

Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area / Saffell B.J., Meinzer F.C., Woodruff D.R., Shaw D.C., Voelker S.L., Lachenbruch B., Falk K. Tree Physiology, 2014, vol. 34, pp. 218-228. https://doi.org/10.1093/treephys/tpu002

Sakai A., Larcher W. Frost survival of plants: responses and adaptations to freezing stress. Berlin: Springer, 1987, 321 p.

Sauter J.J. Temperature-induced changes in starch and sugars in the stem of Populus canadensis robusta. Journal of Plant Physiology, 1988, vol. 132, pp. 608-612. https://doi.org/10.1016/S0176-1617(88)80263-3

Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates / Schaberg P.G., Strimbeck G.R., Hawley G.J., DeHayes D.H., Shane J.B., Murakami P.F., Perkins T.D., Donnely J.R., Wong B.L. Journal of Sustainable Forestry, 1999, no. 10, pp. 173–180. https://doi.org/10.1300/J091v10n01_20

Simard S., Giovannelli A., Treydte K. et al. Intra-annual dynamics of non- structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands / Simard S., Giovannelli A., Treydte K., Traversi M.L., King G.M., Frank D., Fonti P. Tree Physiology, 2013, vol. 33, pp. 913–923. https://doi.org/10.1093/treephys/tpt075

Strimbeck G. R., Kjellsen T.D., Schaberg P.G., Murakami P.F. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage. Trees, 2007, no. 21, pp. 557–567. https://doi.org/10.1007/s00468-007-0151-1

Strimbeck G.R., Kjellsen T.D., Schaberg P.G., Murakami P.F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiology, 2008, vol. 28, pp. 1365-1374. https://doi.org/10.1093/treephys/28.9.1365

Extreme low temperature tolerance in woody plants / Strimbeck G.R., Schaberg P.G., Fossdal C.G., Wolfgang P.S., Kjellsen T.D. Frontiers in Plant Science, 2015, no. 6, Art 884. https://doi.org/10.3389/fpls.2015.00884

Suvorova G.G., Shcherbatyuk A.S., Yan’kova L.S. Specific Features of the Changes in Daily Photosynthetic Productivity of Conifers. II. Siberian Spruce and Pine. Contemporary Problems of Ecology, 2004, vol. 11, pp. 73-79.

список литературы

Гамаюнова А.Ю. Изменение содержания водорастворимых полисахаридов в хвое сосны обыкновенной и ели сибирской при выходе из периода покоя // Сборник материалов Всероссийской научной конференции “Механизмы устойчивости и адаптации биологических систем к природным и техногенным факторам”. Киров, 2015. С. 130.

Иванова M.В., Суворова Г.Г. Структура и функция фотосинтетического аппарата хвойных в условиях юга Восточной Сибири. Иркутск: Изд-во Ин-та географии им. В.Б. Сочавы СО РАН, 2014. 102 с.

Загирова С.В. Структура ассимиляционного аппарата и СО2-газообмен у хвойных. Екатеринбург: УрО РАН, 1999. 108 с.

Влияние структурных особенностей фотосинтетического аппарата и климатических условий на фотосинтетическую продуктивность хвойных/ Оскобина М.В., Суворова Г.Г., Копытова Л.Д., Осколков В.А., Янькова Л.С. // Вестник КрасГАУ. 2010. № 5. С. 28–34

Суворова Г.Г. Фотосинтез хвойных деревьев в условиях Сибири. Новосибирск: Академическое изд-во “Гео”, 2009. 194 с.

Шиманюк А.П. Дендрология. Москва: Лесная промышленность, 1974.264 с.

Carpenter J.F., Hand S.C., Crowe L.M., Crowe J.H. Cryoprotection of phosphofructokinase with organic solutes: Characterization of enhanced protection in the presence of divalent cations // Archives of biochemistry and biophysics, 1986, vol. 250, pp. 505–512. https://doi.org/10.1016/0003-9861(86)90755-1

Impact of warming and drought on carbon balance related to wood formation in black spruce / Deslauriers A., Beaulieu M., Balducci L., Giovannelli A., Gagnon M. J., Rossi S. // Annals of Botany, 2014, vol. 114, pp. 335–345. https://doi.org/10.1093/aob/mcu111

Cold acclimation and deacclimation in wild blueberry: Direct and indirect influence of environmental factors and non-structural carbohydrates / Deslauriers A., Garcia L., Charrier G.; Buttò V., Pichette A., Paré, M. // Agricultural and Forest Meteorology, 2021, pp. 301–302. https://doi.org/10.1016/j.agrformet.2021.108349

Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses / Dos Santos T.B., Budzinski I.G.F., Marur C.J., Petkowicz C.L.O., Pereira L.F.P., Vieira L.G.E. // Plant Physiology and Biochemistry, 2011, vol. 49, pp. 441–448. https://doi.org/10.1101/2020.07.21.212928

Dreywood R. Qualitative Test for Carbohydrate Material // Industrial and Engineering Chemistry Analytical Edition, 1946, vol. 18, pp. 499-499. https://doi.org/ 10.1021/i560156a015

The Effects of Water Stress on Plant Respiration / Flexas J., Galmes,J., Ribas-Carbo M., Medrano H. // Plant Respiration. Advances in Photosynthesis and Respiration [eds. Lambers H., Ribas-Carbo M.] Dordrecht: Springer, 2005. https://doi.org/10.1007/1-4020-3589-6_6

Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of Plant Metabolism during Cold Acclimation // International journal of molecular sciences, 2019, no. 20, Art 5411. https://doi.org/10.3390/ijms20215411

Hansen J., Beck E. Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees // Trees, 1994, no. 8, pp. 172–182. https://doi.org/10.1007/BF00196844

Hinesley L.E., Pharr, D.M., Snelling L.K., Funderburk S.R. Foliar Raffinose and Sucrose in Four Conifer Species: Relationship to Seasonal Temperature // Journal of the American Society for Horticultural Science, 1992, vol. 117, pp. 852-855. https://doi.org/10.21273/JASHS.117.5.852

Huner N.P., Öquist G., Sarhan F. Energy balance and acclimation to light and cold // Trends in Plant Science, 1998, vol. 3, pp. 224-230. https://doi.org/10.1016/S1360-1385(98)01248-5

Korotaeva, N.E., Ivanova, M.V., Suvorova, G.G., Borovskiy, G.B. The impact of the environmental factors on the photosynthetic activity of common pine The impact of the environmental factors on the photosynthetic activity of common pine (Pinus sylvestris) in spring and in autumn in the region of Eastern Siberia // Journal of Forestry Research, 2017, vol. 29, pp. 1465-1473. https://doi.org/10.1007/s11676-017-0582-5

Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles / Korotaeva N., Romanenko A., Suvorova G., Ivanova M., Lomovatskaya L., Borovskii G., Voinikov V. // Photosynthesis Research, 2015, vol. 124, pp. 159-169. https://doi.org/10.1007/s11120-015-0112-2

Intraspecies differences in cold hardiness, carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation / Lee J.H., Yu D.J., Kim S.J., Choi D., Lee H.J. // Tree Physiology, 2012, vol. 32, pp. 1533–1540. https://doi.org/10.1093/treephys/tps102

Li M., Hoch G., Körner C. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline // Trees, 2002, no. 16, pp. 331–337. https://doi.org/10.1007/s00468-002-0172-8

Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe / Lintunen A., PaljakkaT., Jyske T., Peltoniemi M., Sterck F., von Arx G., Cochard H., Copini P., Caldeira M. C., Delzon S., Gebauer R., Grönlund L., Kiorapostolou N., Lechthaler S., Lobo-do-Vale R., Peters R. L., Petit G., Prendin A. L., Salmon Y., Hölttä T. // Frontiers in Plant Science, 2016, no. 7, Art 726. https://doi.org/10.3389/fpls.2016.00726

Liu L.-X., Xu S.-M.,Wang D.-L.,Woo K. Accumulation of pinitol and other soluble sugars inwater-stressed phyllodes of tropical Acacia auriculiformis in northern Australia // New Zealand Journal of Botany, 2008, vol. 46, pp. 119–126. https://doi.org/10.1080/00288250809509759

Nishizawa-Yokoi A., YabutaY., Shigeoka S. The contribution of carbohy-drates including raffinose family oligosaccharides and sugar alcohols to pro-tection of plant cells from oxidative damage // Plant Signaling and Behavior, 2008, vol. 3, pp. 1016–1018. https://doi.org/10.4161/psb.6738

Ögren E. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings // Tree Physiology, 1997, vol. 17, P. 47-51. https://doi.org/10.1093/treephys/17.1.47

Ögren E., Nilsson T., Sundblad L. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine // Plant Cell and Environment, 1997, vol. 20, pp. 247–253. https://doi.org/10.1046/j.1365-3040.1997.d01-56.x

Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence / Regier N., Streb S., Cocozza C., Schaub M., Cherubini P., Zeeman S.C., Frey B. // Plant Cell and Environment, 2009, vol. 32, pp. 1724-1736. https://doi.org/10.1111/j.1365-3040.2009.02030.x

Robakidze E.A., Bobkova K.S. Carbohydrate Accumulation in Siberian Spruce Needles of Various Ages // Russian Journal of Plant Physiology, 2003, vol. 50, pp. 509–515. https://doi.org/10.1023/A:1024724907949

Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area / Saffell B.J., Meinzer F.C., Woodruff D.R., Shaw D.C., Voelker S.L., Lachenbruch B., Falk K. // Tree Physiology, 2014, vol. 34, pp. 218-228. https://doi.org/10.1093/treephys/tpu002

Sakai A., Larcher W. Frost survival of plants: responses and adaptations to freezing stress. Berlin: Springer, 1987. 321 p.

Sauter J.J. Temperature-induced changes in starch and sugars in the stem of Populus canadensis robusta // Journal of Plant Physiology, 1988, vol. 132, pp. 608-612. https://doi.org/10.1016/S0176-1617(88)80263-3

Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates / Schaberg P.G., Strimbeck G.R., Hawley G.J., DeHayes D.H., Shane J.B., Murakami P.F., Perkins T.D., Donnely J.R., Wong B.L. // Journal of Sustainable Forestry, 1999, no. 10, pp. 173–180. https://doi.org/10.1300/J091v10n01_20

Simard S., Giovannelli A., Treydte K. et al. Intra-annual dynamics of non- structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands / Simard S., Giovannelli A., Treydte K., Traversi M.L., King G.M., Frank D., Fonti P. // Tree Physiology, 2013, vol. 33, pp. 913–923. https://doi.org/10.1093/treephys/tpt075

Strimbeck G. R., Kjellsen T.D., Schaberg P.G., Murakami P.F. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage // Trees, 2007, no. 21, pp. 557–567. https:// doi.org/10.1007/s00468-007-0151-1

Strimbeck G.R., Kjellsen T.D., Schaberg P.G., Murakami P.F. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate // Tree Physiology, 2008, vol. 28, pp. 1365-1374. https://doi.org/10.1093/treephys/28.9.1365

Extreme low temperature tolerance in woody plants / Strimbeck G.R., Schaberg P.G., Fossdal C.G., Wolfgang P.S., Kjellsen T.D. Frontiers in Plant Science, 2015, no. 6, Art 884. https://doi.org/10.3389/fpls.2015.00884

Suvorova G.G., Shcherbatyuk A.S., Yan’kova L.S. Specific Features of the Changes in Daily Photosynthetic Productivity of Conifers. II. Siberian Spruce and Pine // Contemporary Problems of Ecology, 2004, vol. 11, pp. 73-79


Просмотров аннотации: 211
Загрузок PDF: 181
Опубликован
2022-12-25
Как цитировать
Korotaeva, N., Oskorbina, M., Gritsai, E., & Borovskii, G. (2022). ИЗМЕНЕНИЯ В СОДЕРЖАНИИ ВОДОРАСТВОРИМЫХ САХАРОВ В ХВОЕ СОСНЫ ОБЫКНОВЕННОЙ И ЕЛИ СИБИРСКОЙ, ПРОИЗРАСТАЮЩИХ НА ЮГЕ ВОСТОЧНОЙ СИБИРИ. Siberian Journal of Life Sciences and Agriculture, 14(6), 122-141. https://doi.org/10.12731/2658-6649-2022-14-6-122-141
Раздел
Биологические исследования