СТРУКТУРНЫЕ ОСОБЕННОСТИ И ПРОИСХОЖДЕНИЕ СЕРПОВИДНЫХ ГЕМОЦИТОВ У НЕКОТОРЫХ ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА BLABERIDAE

  • Elena A. Grebtsova Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» (НИУ «БелГУ») https://orcid.org/0009-0007-0768-0490
  • Andrey A. Prisnyi Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» (НИУ «БелГУ») https://orcid.org/0000-0001-5229-8337
Ключевые слова: гемоциты насекомых, сферулоциты, серповидные клетки, гемолимфа

Аннотация

Цель исследования: поиск представителей семейства Blaberidae, характеризующихся наличием серповидных клеток в гемолимфе. Изучить структурные особенности этих гемоцитов и их происхождение.

Материалы и методы. Исследована гемолимфа нимф и имаго Blaberus craniifer, Eublaberus marajoara, Blaptica dubia, Gromphadorhina portentosa, Perisphaerus serville, Archimandrita tesselata, Pycnoscelus indicus, Gyna lurida, Pseudoglomeris magnifica, Simandoa conserfariam. C помощью световой микроскопии определено количественное содержание серповидных клеток и их морфологические особенности. Кислые гликозаминогликаны обнаруживали посредством окрашивания альциановым синим (pH 1,0). Измерение гемоцитов осуществляли с помощью программного обеспечения NIS-Elements. Применение сканирующей зондовой микроскопии позволило изучить топографию поверхности клеток. Сканирование клеток, а также анализ и обработку данных АСМ проводили приложениях Nova и Image Analysis P9.

Результаты. Среди 10 видов семейства Blaberidae только у трех в гемолимфе обнаружены серповидные клетки: Gromphadorhina portentosa, Blaptica dubia, Archimandrita tesselata. Все они относятся к одному подсемейству Blaberinae. Исследование насекомых разных возрастов позволило обнаружить промежуточные формы, проследить этапы развития серповидных клеток и выявить их родство со сферулоцитами. Сканирование клеток дало дополнительную информацию о площади поверхности. Определено изменение параметров шероховатости сферулоцитов, промежуточных форм клеток нимф вплоть до достижения характерной серповидной формы.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Elena A. Grebtsova, Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» (НИУ «БелГУ»)

кандидат биологических наук, старший преподаватель кафедры биологии

Andrey A. Prisnyi, Федеральное государственное автономное образовательное учреждение высшего образования «Белгородский государственный национальный исследовательский университет» (НИУ «БелГУ»)

доктор биологических наук, директор Института фармации, химии и биологии, профессор кафедры биологии

Литература

Список литературы

Гребцова Е.А. Морфофункциональная характеристика и осморегуляторные реакции гемоцитов представителей отряда Dictyoptera: диссертация ... кандидата биологических наук: 03.03.01 / Гребцова Елена Александровна; [Место защиты: Белгород. гос. аграр. ун-т им. В.Я. Горина]. Белгород, 2017. 184 с.

Новак А.В. Шероховатость пленок аморфного, поликристаллического кремния и поликристаллического кремния с полусферическими зернами / А.В. Новак, В.Р. Новак // Письма в ЖТФ. 2013. Т. 39, вып. 19. С. 32-40.

Присный А.А. Сравнительный анализ морфофункционального статуса клеточных элементов циркулирующих жидкостей беспозвоночных животных: дис. … докт. биол. наук: 03.03.01 / Присный Андрей Андреевич. Белгород, 2016. 403 с.

Ashhurst D.E. Histochemical properties of the spherulocytes of Galleria mellonella L. (Lepidoptera: Pyralidae) // International Journal of Insect Morphology and Embryology. 1982. Vol. 11. P. 285-292. https://doi.org/10.1016/0020-7322(82)90017-4.

Akesson B. Observations on the haemocytes during the metamorphosis of Calliphora erythrocephala (Meig.) // Ark. Zool. 1954. Vol. 6, №12. P. 203-11.

Ben Dhahbi A., Chargui, Y., Boulaaras S.M., Ben Khalifa S., Koko W. and Alresheedi F. Mathematical Modelling of the Sterile Insect Technique Using Different Release Strategies. Mathematical Problems in Engineering. 2020. P. 1-9.

Brehélin M., Zachary D., Hoffmann J.A. A comparative ultrastructural study of blood cells from nine insect orders // Cell Tissue Res. 1978. V.195. P. 45-57. https://doi.org/10.1007/BF00233676

Browne N., Heelan M., Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes // Virulence. 2013. Vol. 4. P. 597-603. https://doi.org/10.4161/viru.25906

Burns K.A., Gutzwiller L.M., Tomoyasu Y., Gebelein B. Oenocyte development in the red flour beetle Tribolium castaneum // Development genes and evolution. 2012. Vol. 222, №2. P. 77-88. https://doi.org/10.1007/s00427-012-0390-z

Csordás G., Grawe F., Uhlirova M. Eater cooperates with multiplexin to drive the formation of hematopoietic compartments // eLife. 2020. Vol. 9. e57297.

Day M.F. The occurrence of mucoid substances in insects // Australian Journal of Biological Sciences. 1949. Vol. 2, № 4. P. 421-427.

Dennell R. A study of an insect cuticle; the larval cuticle of Sarcophaga falculata Pand. (Diptera) // Proc R Soc Lond B Biol Sci. 1946. Vol. 133. P. 348-373. https://doi.org/10.1098/rspb.1946.0017

Dubovskiy I., Kryukova N., Glupov V., Ratcliffe N. Encapsulation and nodulation in insects // Invertebrate Survival Journal. 2016. Vol. 13. P. 229-246.

Gupta A.P. The Identity of the So-called Crescent Cell in the Hemolymph of the Cockroach, Gromphadorhina portentosa (Schaum) (Dictyoptera: Blaberidae) // Cytologia. 1985. Vol. 50. P. 739-745.

Gupta A.P., Sutherland D.J. Observations on the spherule cells in some Blattaria (Orthoptera) // Bull. ent. Soc. Am. 1965. Vol. 11. P. 161.

Gupta A.P., Sutherland D.J. Phase contrast and histochemical studies of spherule cells in cockroaches (Dictyoptera) // Ann Entomol Soc Am. 1967. V. 60, № 3. P. 557-565. https://doi.org/10.1093/aesa/60.3.557

Ermak M.V., Matsishina N.V., Fisenko P.V., Sobko O.A. and Volkov D.I. Ontogenetic features of the morphology of hemolymph cells in Henosepilachna vigintioctomaculata (Coleoptera: Coccinellidae) as an indicator of biodiversity // IOP Conf. Series: Earth and Environmental Science. 2022. 042057. https://doi.org/10.1088/1755-1315/981/4/042057

Hackman R.H. Studies on chitin. I. Enzymic degradation of chitin and chitin esters // Aust J Biol Sci. 1954. Vol. 7, № 2. P. 168-78. https://doi.org/10.1071/bi9540168

İzzetoğlu S., Yıkılmaz M., Turgay-İzzetoğlu G. Ultrastructural characterization of hemocytes in the oriental cockroach Blatta orientalis (Blattodea: Blattidae) // Zoomorphology. 2022. V. 141. P. 95-100. https://doi.org/10.1007/s00435-021-00550-4

Jones J.C. Forms and functions of insect hemocytes // Invertebrate Immunity, eds. K. Maramorosch and R.E. Shoppe. 1975. P. 119-129.

Kolundžić E., Kovačević G., Špoljar M., Sirovina D. A comparison of hemocytes in Phasmatodea and Blattodea species // Entomol News. 2018. V. 127. P. 471-477. https://doi.org/10.3157/021.127.0510

Kwon H, Bang K, Cho S. Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis // PLoS ONE. 2014. Vol. 9. P. 1-12. https://doi.org/10.1371/journal.pone.0103620

Liegeois S., Ferrandon D. An atlas for hemocytes in an insect // Elife. 2020. Vol. 9. https://doi.org/10.7554/elife.59113

Lubawy J., Słocińska M. Characterization of Gromphadorhina coquereliana hemolymph under cold stress // Sci Rep. 2020. Vol. 10, 12076. https://doi.org/10.1038/s41598-020-68941-z

Majumder J., Ghosh D., Agarwala B.K. Haemocyte Morphology and Differential Haemocyte Counts of Giant Ladybird Beetle Anisolemnia dilatata (F.) (Coleoptera: Coccinellidae): A Unique Predator of Bamboo Woolly Aphids // Current Science. 2017. Vol. 112. № 1. P. 160-164.

Mase A., Augsburger J. Brückner K. Macrophages and their organ locations shape each other in development and homeostasis – A Drosophila perspective // Front. Cell Dev. Biol. 2021. Vol. 9, 630272. https://doi.org/10.3389/fcell.2021.630272

Ratcliffe N.A. Spherule cell-test particle interactions in monolayer cultures of Pieris brassicae hemocytes // Journal of Invertebrate Pathology. 1975. Vol. 26, №2. P. 217-223. https://doi.org/10.1016/0022-2011(75)90052-X

Richardson R.T., Ballinger M.N., Qian F. Christman J.W., Johnson R.M. Morphological and functional characterization of honey bee, Apis mellifera, hemocyte cell communities // Apidologie. 2018. Vol. 49, № 3. P. 397-410. https://doi.org/10.1007/s13592-018-0566-2

Ritter H. Blood of a Cockroach: Unusual Cellular Behavior // Science. 1965. P. 518-519.

Ruiz E., López C.M. and Rivas F.A. Comparison of hemocytes of V-instar nymphs of Rhodnius prolixus (Stål) and Rhodnius robustus (Larousse 1927), before and after molting // RFM. 2015. Vol. 63(1). P. 11-17. https://doi.org/10.15446/revfacmed.v63n1.44901

Stanley D., Haas E., Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes // Cells. 2023. Vol. 12(4), 599. https://doi.org/10.3390/cells12040599

Whitten J.M. Hemocytes and metamorphosing tissues in Sarcophaga bullata, Drosophila melanogaster and other cyclorrhaphous Diptera // Journal of Insect Physiology. 1964. Vol. 10, № 3. P. 447-69.

References

Grebtsova E.A. Morphofunctional characterization and osmoregulatory reactions of hemocytes of representatives of the order Dictyoptera. Belgorod, 2017, 184 p.

Novak A.V., Novak V.R. Roughness of films of amorphous, polycrystalline silicon and polycrystalline silicon with hemispherical grains. Letters in ZhTF, 2013, vol. 39, no. 19, pp. 32-40.

Prisniy A.A. Comparative analysis of the morphofunctional status of the cellular elements of the circulating fluids of invertebrate animals. Belgorod, 2016, 403 p.

Ashhurst D.E. Histochemical properties of the spherulocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). International Journal of Insect Morphology and Embryology, 1982, vol. 11, pp. 285-292. https://doi.org/10.1016/0020-7322(82)90017-4.

Akesson B. Observations on the haemocytes during the metamorphosis of Calliphora erythrocephala (Meig.). Ark. Zool., 1954, vol. 6, no. 12, pp. 203-11.

Ben Dhahbi A., Chargui, Y., Boulaaras S.M., Ben Khalifa S., Koko W. and Alresheedi F. Mathematical Modelling of the Sterile Insect Technique Using Different Release Strategies. Mathematical Problems in Engineering. 2020, pp. 1-9.

Brehélin M., Zachary D., Hoffmann J.A. A comparative ultrastructural study of blood cells from nine insect orders. Cell Tissue Res., 1978, vol. 195, pp. 45-57. https://doi.org/10.1007/BF00233676

Browne N., Heelan M., Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence, 2013, vol. 4, pp. 597-603. https://doi.org/10.4161/viru.25906

Burns K.A., Gutzwiller L.M., Tomoyasu Y., Gebelein B. Oenocyte development in the red flour beetle Tribolium castaneum. Development genes and evolution, 2012, vol. 222, no. 2, pp. 77-88. https://doi.org/10.1007/s00427-012-0390-z

Csordás G., Grawe F., Uhlirova M. Eater cooperates with multiplexin to drive the formation of hematopoietic compartments. eLife, 2020, vol. 9, e57297.

Day M.F. The occurrence of mucoid substances in insects. Australian Journal of Biological Sciences, 1949, vol. 2, no. 4, pp. 421-427.

Dennell R. A study of an insect cuticle; the larval cuticle of Sarcophaga falculata Pand. (Diptera). Proc R Soc Lond B Biol Sci., 1946, vol. 133, pp. 348-373. https://doi.org/10.1098/rspb.1946.0017

Dubovskiy I., Kryukova N., Glupov V., Ratcliffe N. Encapsulation and nodulation in insects. Invertebrate Survival Journal, 2016, vol. 13, pp. 229-246.

Gupta A.P. The Identity of the So-called Crescent Cell in the Hemolymph of the Cockroach, Gromphadorhina portentosa (Schaum) (Dictyoptera: Blaberidae). Cytologia, 1985, vol. 50, pp. 739-745.

Gupta A.P., Sutherland D.J. Observations on the spherule cells in some Blattaria (Orthoptera). Bull. ent. Soc. Am., 1965, vol. 11, p. 161.

Gupta A.P., Sutherland D.J. Phase contrast and histochemical studies of spherule cells in cockroaches (Dictyoptera). Ann Entomol Soc Am., 1967, vol. 60, no. 3, pp. 557-565. https://doi.org/10.1093/aesa/60.3.557

Ermak M.V., Matsishina N.V., Fisenko P.V., Sobko O.A. and Volkov D.I. Ontogenetic features of the morphology of hemolymph cells in Henosepilachna vigintioctomaculata (Coleoptera: Coccinellidae) as an indicator of biodiversity. IOP Conf. Series: Earth and Environmental Science, 2022, 042057. https://doi.org/10.1088/1755-1315/981/4/042057

Hackman R.H. Studies on chitin. I. Enzymic degradation of chitin and chitin esters. Aust J Biol Sci., 1954, vol. 7, no. 2, pp. 168-78. https://doi.org/10.1071/bi9540168

İzzetoğlu S., Yıkılmaz M., Turgay-İzzetoğlu G. Ultrastructural characterization of hemocytes in the oriental cockroach Blatta orientalis (Blattodea: Blattidae). Zoomorphology, 2022, vol. 141, pp. 95-100. https://doi.org/10.1007/s00435-021-00550-4

Jones J.C. Forms and functions of insect hemocytes. Invertebrate Immunity, eds. K. Maramorosch and R.E. Shoppe. 1975, pp. 119-129.

Kolundžić E., Kovačević G., Špoljar M., Sirovina D. A comparison of hemocytes in Phasmatodea and Blattodea species. Entomol News, 2018, vol. 127, pp. 471-477. https://doi.org/10.3157/021.127.0510

Kwon H, Bang K, Cho S. Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PLoS ONE, 2014, vol. 9, pp. 1-12. https://doi.org/10.1371/journal.pone.0103620

Liegeois S., Ferrandon D. An atlas for hemocytes in an insect. Elife, 2020, vol. 9. https://doi.org/10.7554/elife.59113

Lubawy J., Słocińska M. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Sci Rep., 2020, vol. 10, 12076. https://doi.org/10.1038/s41598-020-68941-z

Majumder J., Ghosh D., Agarwala B.K. Haemocyte Morphology and Differential Haemocyte Counts of Giant Ladybird Beetle Anisolemnia dilatata (F.) (Coleoptera: Coccinellidae): A Unique Predator of Bamboo Woolly Aphids. Current Science, 2017, vol. 112, no. 1, pp. 160-164.

Mase A., Augsburger J. Brückner K. Macrophages and their organ locations shape each other in development and homeostasis – A Drosophila perspective. Front. Cell Dev. Biol., 2021, vol. 9, 630272. https://doi.org/10.3389/fcell.2021.630272

Ratcliffe N.A. Spherule cell-test particle interactions in monolayer cultures of Pieris brassicae hemocytes. Journal of Invertebrate Pathology, 1975, vol. 26, no. 2, pp. 217-223. https://doi.org/10.1016/0022-2011(75)90052-X

Richardson R.T., Ballinger M.N., Qian F. Christman J.W., Johnson R.M. Morphological and functional characterization of honey bee, Apis mellifera, hemocyte cell communities. Apidologie, 2018, vol. 49, no. 3, pp. 397-410. https://doi.org/10.1007/s13592-018-0566-2

Ritter H. Blood of a Cockroach: Unusual Cellular Behavior. Science, 1965, pp. 518-519.

Ruiz E., López C.M. and Rivas F.A. Comparison of hemocytes of V-instar nymphs of Rhodnius prolixus (Stål) and Rhodnius robustus (Larousse 1927), before and after molting. RFM, 2015, vol. 63(1), pp. 11-17. https://doi.org/10.15446/revfacmed.v63n1.44901

Stanley D., Haas E., Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells, 2023, vol. 12(4), 599. https://doi.org/10.3390/cells12040599

Whitten J.M. Hemocytes and metamorphosing tissues in Sarcophaga bullata, Drosophila melanogaster and other cyclorrhaphous Diptera. Journal of Insect Physiology, 1964, vol. 10, no. 3, pp. 447-69.


Просмотров аннотации: 31
Загрузок PDF: 26
Опубликован
2024-02-29
Как цитировать
Grebtsova, E., & Prisnyi, A. (2024). СТРУКТУРНЫЕ ОСОБЕННОСТИ И ПРОИСХОЖДЕНИЕ СЕРПОВИДНЫХ ГЕМОЦИТОВ У НЕКОТОРЫХ ПРЕДСТАВИТЕЛЕЙ СЕМЕЙСТВА BLABERIDAE. Siberian Journal of Life Sciences and Agriculture, 16(1), 61-74. https://doi.org/10.12731/2658-6649-2024-16-1-725
Раздел
Биологические исследования