ВЛИЯНИЕ ИЗМЕНЕНИЯ КЛИМАТА, ФОРМЫ И ИЗБЫТКА АЗОТНЫХ УДОБРЕНИЙ НА РАЗВИТИЕ ГРИБКОВЫХ ЗАБОЛЕВАНИЙ ПШЕНИЦЫ
Аннотация
Обоснование. Глобальное изменение климата и чрезмерное применение азота стали серьезной проблемой и неизбежно угрожают устойчивому производству пшеницы не только с прямым негативным воздействием на рост культур, но и с серьезным воздействием на биологию и борьбу с вредителями и болезнями.
Цель. В этом обзоре рассматриваются две текущие проблемы, а именно негативное влияние изменения климата и формы и избытка богатых азотом удобрений на развитие грибковых заболеваний пшеницы, а также стратегии управления.
Материалы и методы. Для достижения заявленной цели исследования было проведено изучение опубликованной научной литературы за последние 20 лет о влиянии изменения климата, формы и избытка азотных удобрений на развитие грибковых болезней и на урожайность пшеницы.
Результаты. Таким образом, для решения этих текущих проблем необходимо оптимизировать дозу азотных удобрений, вносить азот в виде селитры, сульфата аммония, аммиачной селитры и карбамидных удобрений в оболочке, использовать силикатные удобрения, такие как силикат кальция, магния и калия, а также осуществлять длительный севооборот пшеницы с многолетними бобовыми травами и зернобобовыми культурами. Вывести путем редактирования генома сорта с высоким потенциалом урожайности, устойчивые к биотическим и абиотическим стрессам и хорошего качества для конечного использования, или возделывать новые зерновые, которые нуждаются в тепле и имеют более длительный период репродуктивного роста.
Заключение. Чтобы разработать эффективную стратегию управления сельскохозяйственным производством, будущие исследования должны быть основаны на изучении взаимодействия между сельскохозяйственными культурами, вредителями, патогенами и системой земледелия в условиях изменения климата, принимая во внимание все параметры, такие как повышение температуры и CO2, обилие осадков и т. д. Необходимо опубликовать достаточное количество результатов, чтобы можно было сделать осмысленные выводы.
Скачивания
Литература
References
Altukhov A. I., Zavalin A. A., Milaschenko N. Z., Trushkin S. V. The problem of improving wheat quality in the country requires a complex solution. Vestnik of Kursk State Agricultural Academy, 2020, no. 2, pp. 32-39.
Asseng S., Ewert F., Martre P., et al. Rising temperatures reduce global wheat production. Nature Clim Change, 2015, vol. 5 no. 2, pp. 143–147. https://doi.org/10.1038/nclimate2470
Bajwa A. A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., Siddique K.H.M. Impact of climate change on biology and management of wheat pests. Crop Protection, 2020, vol. 137, no. 105304. https://doi.org/10.1016/j.cropro.2020.105304
Bao, X., Liu, X., Hou, X. et al. Single irrigation at the four-leaf stage in the spring optimizes winter wheat water consumption characteristics and water use efficiency. Sci Rep, 2022, vol. 12, pp. 14257. https://doi.org/10.1038/s41598-022-18446-8
Belan I. A., Rosseeva L. P., Grigoriev Yu. P., Pakhotina I. V. High-quality variety of soft spring wheat Omskaya 44 for the conditions of Western Siberia and Omsk region. Agricultural Science Euro-North-East, 2022, vol. 23, no. 2, pp. 174-183. https://doi.org/10.30766/2072-9081.2022.23.2.174-183
Belaqziz S., Khabba S., Kharrou MH., Bouras EH., Er-Raki S., Chehbouni A. Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach. Remote Sensing, 2021, vol.13, no. 18, 3789. https://doi.org/10.3390/rs13183789
Ben Omrane M. Study of nitrogen absorption and remobilization mechanisms in order to characterize the efficiency of nitrogen use in durum wheat under biotic stress (septoria). Dissertation (Master of science): CIHEAM-IAMM, Montpellier (France), 2020 p. 68 (Master of Science: Professional, num.969). http://www.iamm.ciheam.org/ress_doc/opac_css/index.php?lvl=notice_display&id=42265
Bencze S., Vida G., Balla K., Varga-László E., Veisz O. Response of wheat fungal diseases to elevated atmospheric CO2 Level. Cereal Res Commun, 2013, vol. 41, pp. 1–11. https://doi.org/10.1556/CRC.2013.0021
Blandino M., Badeck F.W., Giordano D., Marti A., Rizza F., Scarpino V., & Vaccino, P. Elevated CO2 Impact on Common Wheat (Triticum aestivum L.) Yield, Wholemeal Quality, and Sanitary Risk. Journal of agricultural and food chemistry, 2020, vol. 68(39), pp. 10574–10585. https://doi.org/10.1021/acs.jafc.0c02975
Brauer E. K., Balcerzak M., Rocheleau H., Leung W., Schernthaner J., Subramaniam R., Ouellet T. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat. Molecular plant-microbe interactions: MPMI, 2020, vol. 33, no. 3, pp. 553–560. https://doi.org/10.1094/MPMI-11-19-0332-R
Bryant R.R.M., Mcgrann G.R.D., Mitchell A.R., Schoonbeek H., Boyd L.A., Uauy C., Dorling S., Ridout C.J. A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC. Plant Biol, 2014, vol. 14, no.10. https://doi.org/10.1186/1471-2229-14-10
Chekali S., Gargouri S., Berraies S., Gharbi M.S., Nicol M.J., Nasraoui B. Impact of Fusarium foot and root rot on yield of cereals in Tunisia. Tunisian Journal of Plant Protection, 2013, vol. 8, no. 2, pp. 75-86.
Dallagnol L.J., Ramos A.E. R., Dorneles K.d.R. Silicon use in the integrated disease management of wheat: current knowledge. in (ed.), current trends in wheat research. IntechOpen, 2020 https://doi.org/10.5772/intechopen.95285
Devadas R., Simpfendorfer S., Backhouse D., Lamb D.W. Effect of stripe rust on the yield response of wheat to nitrogen. Crop J., 2014, vol. 2, pp. 201–206. https://doi.org/10.1016/j.cj.2014.05.002
Diakite S., Pakina E., Zargar M., Aldaibe A. A.D., Denis P., Gregory L., Behzad A. Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices. Res. Crop, 2022, vol. 23, no. 2, pp. 418-436. https://doi.org/10.31830/2348-7542.2022.057
Eddine B.S., El Yousfi B., Douira A. Interaction of nitrogen fertilizers with wheat growth stage and foliar treatment with urea effects on WCR induced by Fusarium culmorum. Plant Archives, 2019, vol. 19, no.2, pp. 2829-2835.
Eddine B.S., El Yousfi B., Douira A. Effects of nitrogen forms and rates on Fusarium culmorum growth, fitness, aggressiveness and wheat, barley and triticale resistance to crown rot disease. Plant Cell Biotechnology and Molecular Biology, 2020, vol. 21, pp. 107-129.
Eddine B.S., Douira A., El Yousfi B. Effect of nitrogenous fertilizers on wheat and barley yield under biotic stress due to dry crown rot induced by Fusarium culmorum. Moroccan Journal of Agricultural Sciences, 2022, vol. 10(1), pp. 17-30. (In French)
Erenstein O., Jaleta M., Mottaleb K.A., Sonder K., Donovan J., Braun HJ. Global trends in wheat production, consumption and trade. In: Reynolds, M.P., Braun, HJ. (eds) wheat improvement. Springer Cham, 2022. https://doi.org/10.1007/978-3-030-90673-3_4
FAO. Quarterly Global Report: Crop Prospects and Food Situation. FAO, 2018. http://www.fao.org/publications
Gao H., Niu J., Liu W., Zhang D., Li S. Effect of wheat powdery mildew on grain nitrogen metabolism. The Journal of Agricultural Science, 2022, vol. 159, no. 1-2, pp. 128-138. https://doi.org/10.1017/S0021859621000307
Gavrilova A.Yu., Konova A.M., Samsonova N.E. Influence of doses and combinations of mineral fertilizers on formation of productivity and quality of malting barley grain in the Central Non-Chernozem Region, Agrochemicals, 2020, no. 9, pp. 24–31. https://doi.org/10.31857/S0002188120090069
Geng X., Wang F., Ren W., Hao Z. Climate change impacts on winter wheat yield in Northern China. Advances in Meteorology, 2019, vol. 2019, pp. 1–12. https://doi.org/10.1155/2019/2767018
Ghafoor I., Habib-Ur-Rahman M., Ali M., Afzal M., Ahmed W., Gaiser T., Ghaffar A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ Sci Pollut Res, 2021, vol. 28, no. 32, pp. 43528–43543. https://doi.org/10.1007/s11356-021-13700-4
Guo J., Jia Y., Chen H., Zhang L., Yang J., Zhang J., Hu X., Ye X., Li Y., Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific reports, 2019, vol. 9(1), no. 1248. https://doi.org/10.1038/s41598-018-37838-3
Gupta N., Debnath S., Sharma S., Sharma P., Purohit J. Role of nutrients in controlling the plant diseases in sustainable agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-5343-6_8
IPPC Secretariat. Scientific review of the impact of climate change on plant pests – A globa challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome. FAO on behalf of the IPPC Secretariat, 2021. https://doi.org/10.4060/cb4769en
Jalli M., Huusela E., Jalli H., Kauppi K., Niemi M., Himanen S., Jauhiainen L. Effects of Crop Rotation on Spring Wheat Yield and Pest Occurrence in Different Tillage Systems: A Multi-Year Experiment in Finnish Growing Conditions. Front. Sustain. Food Syst., 2021, vol. 5, pp. 647335. https://doi.org/10.3389/fsufs.2021.647335
Kekalo A.Yu., Zargaryan N.Yu., Filippov A.S., Nemchenko V.V. Efficiency of application of fungicides for spring wheat protection against root rots. Siberian Herald of Agricultural Science, 2019, vol. 49, no. 3, pp. 24-30. https://doi.org/10.26898/0370-8799-2019-3-3
Kourat T., Smadhi D., Madani A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria, Climate, 2022, vol.10, no. 4, 50. https://doi.org/10.3390/cli10040050
Levitin M.M. Microorganisms and global climate change. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, vol. 50, no. 5, pp. 641-647. https://doi.org/10.15389/agrobiology.2015.5.641rus
Luo C., Ma L., Zhu J., Guo Z., Dong K., Dong Y. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield. Front. Plant Sci., 2021, vol. 12, no. 637393. d https://doi.org/10.3389/fpls.2021.637393
Lyu X., Liu Y., Li N., Ku L., Hou Y., Wen X. Foliar applications of various nitrogen (N) forms to winter wheat affect grain protein accumulation and quality via N metabolism and remobilization. The Crop Journal. 2022, vol. 10, pp. 1165–1177. https://doi.org/10.1016/j.cj.2021.10.009
MAPM. Moroccan agriculture in figures 2017, 2018 edition. Ministry of Agriculture and Maritime Fisheries (MAPM), 2017. http://www.agriculture.gov.ma/sites/default/files/AgricultureEnChiffre2017VAVF.pdf
Marini L., St-Martin A., Vico G., Baldoni G., Berti A., Blecharczyk A., et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett., 2020, vol. 15, no. 12, pp. 124011. https://doi.org/10.1088/1748-9326/abc651
Matić S., Cucu M.A., Garibaldi A., Gullino M.L. Combined effect of co2 and temperature on wheat powdery mildew development. The plant pathology journal, 2018, vo.l 34, no. 4, pp. 316–326. https://doi.org/10.5423/PPJ.OA.11.2017.0226
Miedaner T., Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theor Appl Genet, 2021, vo. 134, no. 6, pp. 1771–1785. https://doi.org/10.1007/s00122-021-03807-0
Navarro C. E., Lam S.K., Trębicki P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Frontiers in plant science, 2020, vol. 11, no. 605337. https://doi.org/10.3389/fpls.2020.605337
Nazari M., Mirgol B., Salehi H. climate change impact assessment and adaptation strategies for rainfed wheat in contrasting climatic regions of Iran. Front. Agron, 2021, vol. 3, no. 806146. https://doi.org/10.3389/fagro.2021.806146
Nuttall J., Brady S., Brand J., O’Leary G., Fitzgerald GJ. Heat waves and wheat growth under a future climate. In The 16th Australian Agronomy Conference: Climate Change, pp. 14-18. http://www.regional.org.au/au/asa/2012/climate-change/8085_nuttalljg.htm
Olesen J., Jørgensen L., Petersen J., Mortensen J. Effects of rate and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 1. Grain yield and foliar disease control. The Journal of Agricultural Science, 2003, vol. 140, no. 1, pp. 1-13. https://doi.org/10.1017/S0021859602002885
Park, R.F., Golegaonkar, P.G., Derevnina, L., Sandhu, K. S., Karaoglu, H., Elmansour, H.M., Dracatos, P.M., Singh,D. Leaf rust of cultivated barley: pathology and control. Annual review of phytopathology, 2015, vol. 53(1), pp. 565–589. https://doi.org/10.1146/annurev-phyto-080614-120324
Prank M., Kenaley SC., Bergstrom G.C., Acevedo M., Mahowald N.M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environmental Research Letters, 2019, vol. 14, no. 12, p. 124053. https://doi.org/10.1088/1748-9326/ab57de
Razina A.A., Dyatlova O.G. Reduction of root rot harmful effect by agrobackground and seed treatment. Siberian Herald of Agricultural Science. 2015, no. 5, pp. 19-24.
Rempelos L., Almuayrifi A.M., Baranski M., Tetard-Jones C., Eyre M., Shotton P., Cakmak I., Ozturk L., Cooper J., Volakakis N., Schmidt C., Sufar E., Wang J., Wilkinson A., Rosa E.A.S., Zhao B., Rose T.J., Leifert C., Bilsborrow P. Effects of agronomic management and climate on leaf phenolic profiles, disease severity, and grain yield in organic and conventional wheat production systems. Journal of Agricultural and Food Chemistry, 2018, vol. 66 (40), pp. 10369-10379. https://doi.org/10.1021/acs.jafc.8b02626
Rettie F.M., Gayler S., Tobias K.D., Weber T., Tesfaye K., Streck T. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. PloS one, 2022, vol. 17(1), no. e0262951. https://doi.org/10.1371/journal.pone.0262951
Rogojnikova E.S., Shpanev A.M., Fesenko M.A. Influence of fertilizers on the damage of spring barley by diseases in the IV agro-climatic zone Leningrad region. Vestnik zashchityrasteniy, 2016 vol. 4, no. 90, pp. 56–61.
Różewicz M., Wyzińska M., Grabiński J. The Most important fungal diseases of cereals—problems and possible solutions. Agronomy, 2021, vol. 11, no. 4, pp. 714. https://doi.org/10.3390/agronomy11040714
Sharipova R. B., Khakimov R. A., Khakimova N. V. Influence of precurses and sowing date on overwintering and winter wheat productivity under changing regional conditions. Vestnik of the Kazan State Agrarian University, 2020, vol. 15, no. 2, pp. 66-71. https://doi.org/10.12737/2073-0462-2020-66-71
Sharma-Poudyal D., Sharma R.C., Duveiller E. Control of Helminthosporium leaf blight of spring wheat using seed treatments and single foliar spray in Indo‐Gangetic Plains of Nepal. Crop Protect, 2016, vol. 88, pp. 161–166. https://doi.org/10.1016/j.cropro.2016.06.017
Shivay Y.S., Pooniya V., Prasad R., Pal M., Bansal R. Sulphur-coated urea as a source of sulphur and an enhanced efficiency of nitrogen fertilizer for spring wheat. Cereal Res Commun, 2016, vol. 44, no. 3, pp. 513–523. https://doi.org/10.1556/0806.44.2016.002
Solovichenko V.D., Nikitin V.V., Karabutov A.P., Navolneva E.V. The impact of crop rotation, methods of tillage and fertilizers on the yield and economic performance of winter wheat. Agrarian science, 2018, no. 5, pp. 46-49.
Strygina K. V., Khlestkina E. K. Wheat, barley and maize genes editing using the CRISPR/Cas system. Plant Biotechnology and Breeding, 2020, vol. 3, no. 1, pp. 46-56. https://doi.org/10.30901/2658-6266-2020-1-o2
Tadesse W., Bishaw Z., Assefa S. Wheat production and breeding in Sub-Saharan Africa: Challenges and opportunities in the face of climate change, International Journal of Climate Change Strategies and Management, 2019, vol. 11, no. 5, pp. 696-715. https://doi.org/10.1108/IJCCSM-02-2018-0015
Tuktarova N.G. impact of current climate change trends on the state of winter cereal crops. Perm Agrarian Journal, 2019, vol. 25, no. 1, pp. 80–86.
Váry Z., Mullins E., McElwain J.C., Doohan F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob Chang Biol, 2015, vol. 21, no. 7, pp. 2661-2669. https://doi.org/10.1111/gcb.12899
Wang B.X., Hof A.R., Ma C.S. Impacts of climate change on crop production, pests and pathogens of wheat and rice. Frontiers of Agricultural Science and Engineering, 2022, vol. 9, no. 1, pp. 4-18. https://doi.org/10.15302/J-FASE-2021432
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, vol. 32, no. 9, pp. 947-951. https://doi.org/10.1038/nbt.2969
Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., Akhunov E. Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR J., 2018, vol.1, no. 1, pp. 65–74. https://doi.org/10.1089/crispr.2017.0010
Yang C., Fraga H., van Ieperen W. et al. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Climatic Change, 2019, vol. 154, no. 1, pp. 159–178. https://doi.org/10.1007/s10584-019-02419-4
Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant Journal, 2017, vol. 91, no. 4, pp. 714-724. https://doi.org/10.1111/tpj.13599
Zhao C., Liu B., Piao S., Wang X., Lobell D.B., Huang Y., Huang M., Yao Y., Bassu S., Ciais P., Durand J.L., Elliott J., Ewert F., Janssens I.A., Li T., Lin E., Liu Q., Martre P., Müller C., Peng S., Peñuelas J., Ruane A.C., Wallach D., Wang T., Wu D., Liu Z., Zhu Y., Zhu Z., Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, vol. 114, no. 35, pp. 9326–9331. https://doi.org/10.1073/pnas.1701762114
Zhu J.H., Dong Y., Xiao J.X., Zhen Y., Tang L. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system. Ying yong sheng tai xue bao = The journal of applied ecology, 2017, vol. 28, no. 12, pp. 3985–3993. https://doi.org/10.13287/j.1001-9332.201712.029
Список литературы
Алтухов А. И., Завалин А. А., Милащенко Н. З., Трушкин С. В. Проблема повышения качества пшеницы в стране требует комплексного решения // Вестник Курской государственной сельскохозяйственной академии. 2020. № 2. С. 32-39.
Asseng S., Ewert F., Martre P., et al. Rising temperatures reduce global wheat production // Nature Clim Change, 2015, vol. 5 no. 2, pp. 143–147. https://doi.org/10.1038/nclimate2470
Bajwa A. A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., Siddique K.H.M. Impact of climate change on biology and management of wheat pests // Crop Protection, 2020, vol. 137, 105304. https://doi.org/10.1016/j.cropro.2020.105304
Bao, X., Liu, X., Hou, X. et al. Single irrigation at the four-leaf stage in the spring optimizes winter wheat water consumption characteristics and water use efficiency // Sci Rep, 2022, vol. 12, 14257. https://doi.org/10.1038/s41598-022-18446-8
Белан И. А., Россеева Л. П., Григорьев Ю. П., Пахотина И. В. Высококачественный сорт пшеницы мягкой яровой Омская 44 для условий Западной Сибири и Омской области // Аграрная наука Евро-Северо-Востока, 2022. Т. 23, №. 2. С. 174-183. https://doi.org/10.30766/2072-9081.2022.23.2.174-183
Belaqziz S., Khabba S., Kharrou MH., Bouras EH., Er-Raki S., Chehbouni A. Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach // Remote Sensing, 2021, vol. 13, no. 18, 3789. https://doi.org/10.3390/rs13183789
Ben Omrane M. Etude de mécanismes d’absorption et de remobilisation de l’azote afin de parvenir à la caractérisation de l’efficience de l’utilisation de l’azote chez le blé dur sous un stress biotique (la septoriose) // Mémoire (Master of science): CIHEAM-IAMM, Montpellier (France), 2020, pp. 68. (Master of Science: Professionnel, n. 969). http://www.iamm.ciheam.org/ress_doc/opac_css/index.php?lvl=notice_display&id=42265
Bencze S., Vida G., Balla K., Varga-László E., Veisz O. Response of wheat fungal diseases to elevated atmospheric CO2 Level // Cereal Res Commun, 2013, vol. 41, pp. 1–11. https://doi.org/10.1556/CRC.2013.0021
Blandino M., Badeck F.W., Giordano D., Marti A., Rizza F., Scarpino V., & Vaccino, P. Elevated CO2 Impact on Common Wheat (Triticum aestivum L.) Yield, Wholemeal Quality, and Sanitary Risk // Journal of agricultural and food chemistry, 2020, vol. 68(39), pp. 10574–10585. https://doi.org/10.1021/acs.jafc.0c02975
Brauer E. K., Balcerzak M., Rocheleau H., Leung W., Schernthaner J., Subramaniam R., Ouellet T. Genome Editing of a Deoxynivalenol-Induced Transcription Factor Confers Resistance to Fusarium graminearum in Wheat // Molecular plant-microbe interactions: MPMI, 2020, vol. 33, no. 3, pp. 553–560. https://doi.org/10.1094/MPMI-11-19-0332-R
Bryant R.R.M., Mcgrann G.R.D., Mitchell A.R., Schoonbeek H., Boyd L.A., Uauy C., Dorling S., Ridout C.J. A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC // Plant Biol, 2014, vol.14, no.10. https://doi.org/10.1186/1471-2229-14-10
Chekali S., Gargouri S., Berraies S., Gharbi M.S., Nicol M.J., Nasraoui B. Impact of Fusarium foot and root rot on yield of cereals in Tunisia // Tunisian Journal of Plant Protection, 2013, vol. 8, no. 2, pp. 75-86.
Dallagnol L.J., Ramos A.E. R., Dorneles K.d.R. Silicon use in the integrated disease management of wheat: current knowledge. in (ed.), current trends in wheat research // IntechOpen, 2020 https://doi.org/10.5772/intechopen.95285
Devadas R., Simpfendorfer S., Backhouse D., Lamb D.W. Effect of stripe rust on the yield response of wheat to nitrogen // Crop J., 2014, vol. 2, pp. 201–206. https://doi.org/10.1016/j.cj.2014.05.002
Diakite S., Pakina E., Zargar M., Aldaibe A. A.D., Denis P., Gregory L., Behzad A. Yield losses of cereal crops by Fusarium Link: A review on the perspective of biological control practices // Res. Crop, 2022, vol. 23, no. 2, pp. 418-436. https://doi.org/10.31830/2348-7542.2022.057
Eddine B.S., El Yousfi B., Douira A. Interaction of nitrogen fertilizers with wheat growth stage and foliar treatment with urea effects on WCR induced by Fusarium culmorum // Plant Archives, 2019, vol. 19, no.2, pp. 2829-2835.
Eddine B.S., El Yousfi B., Douira A. Effects of nitrogen forms and rates on Fusarium culmorum growth, fitness, aggressiveness and wheat, barley and triticale resistance to crown rot disease // Plant Cell Biotechnology and Molecular Biology, 2020, vol. 21, pp. 107-129.
Eddine B.S., Douira A., El Yousfi B. Effets des engrais azotés sur le rendement du blé et de l’orge sous stress biotique dû à la pourriture sèche du collet induite par le Fusarium culmorum // Moroccan Journal of Agricultural Sciences, 2022, vol. 10(1) pp. 17-30.
Erenstein O., Jaleta M., Mottaleb K.A., Sonder K., Donovan J., Braun HJ. Global trends in wheat production, consumption and trade. In: Reynolds, M.P., Braun, HJ. (eds) wheat improvement, Springer Cham, 2022. https://doi.org/10.1007/978-3-030-90673-3_4
FAO. Quarterly Global Report: Crop Prospects and Food Situation. FAO, 2018. http://www.fao.org/publications
Gao H., Niu J., Liu W., Zhang D., Li S. Effect of wheat powdery mildew on grain nitrogen metabolism // The Journal of Agricultural Science, 2022, vol. 159, no. 1-2, pp. 128-138. https://doi.org/10.1017/S0021859621000307
Гаврилова А.Ю., Конова А.М., Самсонова Н. Е. Влияние доз и сочетаний минеральных удобрений на формирование урожайности и качества зерна пивоваренного ячменя в центральном нечерноземье // Агрохимия. 2020. № 9. С. 24–31. https://doi.org/10.31857/S0002188120090069
Geng X., Wang F., Ren W., Hao Z. Climate change impacts on winter wheat yield in Northern China // Advances in Meteorology, 2019, vol. 2019, pp. 1–12. https://doi.org/10.1155/2019/2767018
Ghafoor I., Habib-Ur-Rahman M., Ali M., Afzal M., Ahmed W., Gaiser T., Ghaffar A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment // Environ Sci Pollut Res, 2021, vol. 28, no. 32, pp. 43528–43543. https://doi.org/10.1007/s11356-021-13700-4
Guo J., Jia Y., Chen H., Zhang L., Yang J., Zhang J., Hu X., Ye X., Li Y., Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply // Scientific reports, 2019, vol. 9(1), no. 1248. https://doi.org/10.1038/s41598-018-37838-3
Gupta N., Debnath S., Sharma S., Sharma P., Purohit J. Role of nutrients in controlling the plant diseases in sustainable agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-5343-6_8
IPPC Secretariat. Scientific review of the impact of climate change on plant pests – A globa challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome. FAO on behalf of the IPPC Secretariat, 2021. https://doi.org/10.4060/cb4769en
Jalli M., Huusela E., Jalli H., Kauppi K., Niemi M., Himanen S., Jauhiainen L. Effects of Crop Rotation on Spring Wheat Yield and Pest Occurrence in Different Tillage Systems: A Multi-Year Experiment in Finnish Growing Conditions // Front. Sustain. Food Syst., 2021, vol. 5, pp. 647335. https://doi.org/10.3389/fsufs.2021.647335
Кекало А.Ю., Заргарян Н.Ю., Филиппов А.С., Немченко В.В. Эффективность применения фунгицидов для защиты яровой пшеницы от корневых гнилей // Сибирский вестник сельскохозяйственной науки. 2019. Т. 49, № 3. С. 24-30. https://doi.org/10.26898/0370-8799-2019-3-3
Kourat T., Smadhi D., Madani A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria // Climate, 2022, vol.10, no. 4, 50. https://doi.org/10.3390/cli10040050
Левитин М.М. Микроорганизмы в условиях глобального изменения климата // Сельскохозяйственная биология. 2015. Т. 50, №. 5. С. 641-647. https://doi.org/10.15389/agrobiology.2015.5.641rus
Luo C., Ma L., Zhu J., Guo Z., Dong K., Dong Y. Effects of nitrogen and intercropping on the occurrence of wheat powdery mildew and stripe rust and the relationship with crop yield // Front. Plant Sci., 2021, vol. 12, no. 637393. d https://doi.org/10.3389/fpls.2021.637393
Lyu X., Liu Y., Li N., Ku L., Hou Y., Wen X. Foliar applications of various nitrogen (N) forms to winter wheat affect grain protein accumulation and quality via N metabolism and remobilization // The Crop Journal. 2022, vol. 10, pp. 1165–1177. https://doi.org/10.1016/j.cj.2021.10.009
MAPM. L’agriculture marocaine en chiffres 2017, édition 2018 // Ministère de l’Agriculture et de la Pêche Maritime (MAPM), 2017. http://www.agriculture.gov.ma/sites/default/files/AgricultureEnChiffre2017VAVF.pdf
Marini L., St-Martin A., Vico G., Baldoni G., Berti A., Blecharczyk A., et al. Crop rotations sustain cereal yields under a changing climate // Environ. Res. Lett., 2020, vol. 15, no. 12, pp. 124011. https://doi.org/10.1088/1748-9326/abc651
Matić S., Cucu M.A., Garibaldi A., Gullino M.L. Combined effect of co2 and temperature on wheat powdery mildew development // The plant pathology journal, 2018, vo.l 34, no. 4, pp. 316–326. https://doi.org/10.5423/PPJ.OA.11.2017.0226
Miedaner T., Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe // Theor Appl Genet, 2021, vo. 134, no. 6, pp. 1771–1785. https://doi.org/10.1007/s00122-021-03807-0
Navarro C. E., Lam S.K., Trębicki P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest // Frontiers in plant science, 2020, vol. 11, no. 605337. https://doi.org/10.3389/fpls.2020.605337
Nazari M., Mirgol B., Salehi H. climate change impact assessment and adaptation strategies for rainfed wheat in contrasting climatic regions of Iran // Front. Agron, 2021, vol. 3, no. 806146. https://doi.org/10.3389/fagro.2021.806146
Nuttall J., Brady S., Brand J., O’Leary G., Fitzgerald GJ. Heat waves and wheat growth under a future climate. In The 16th Australian Agronomy Conference: Climate Change, pp. 14-18. http://www.regional.org.au/au/asa/2012/climate-change/8085_nuttalljg.htm
Olesen J., Jørgensen L., Petersen J., Mortensen J. Effects of rate and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 1. Grain yield and foliar disease control // The Journal of Agricultural Science, 2003, vol. 140, no. 1, pp. 1-13. https://doi.org/10.1017/S0021859602002885
Park, R.F., Golegaonkar, P.G., Derevnina, L., Sandhu, K. S., Karaoglu, H., Elmansour, H.M., Dracatos, P.M., Singh,D. Leaf rust of cultivated barley: pathology and control // Annual review of phytopathology, 2015, vol. 53(1), pp. 565–589. https://doi.org/10.1146/annurev-phyto-080614-120324
Prank M., Kenaley SC., Bergstrom G.C., Acevedo M., Mahowald N.M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease // Environmental Research Letters, 2019, vol. 14, no. 12, p. 124053. https://doi.org/10.1088/1748-9326/ab57de
Разина А.А., Дятлова О.Г. Влияние агрофона и протравливания семян яровой пшеницы на снижение вредоносности корневой гнили // Сибирский Вестник Сельскохозяйственной Науки. 2015. № 5. С. 19-24.
Rempelos L., Almuayrifi A.M., Baranski M., Tetard-Jones C., Eyre M., Shotton P., Cakmak I., Ozturk L., Cooper J., Volakakis N., Schmidt C., Sufar E., Wang J., Wilkinson A., Rosa E.A.S., Zhao B., Rose T.J., Leifert C., Bilsborrow P. Effects of agronomic management and climate on leaf phenolic profiles, disease severity, and grain yield in organic and conventional wheat production systems // Journal of Agricultural and Food Chemistry, 2018, vol. 66 (40), pp. 10369-10379. https://doi.org/10.1021/acs.jafc.8b02626
Rettie F.M., Gayler S., Tobias K.D., Weber T., Tesfaye K., Streck T. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis // PloS one, 2022, vol. 17(1), no. e0262951. https://doi.org/10.1371/journal.pone.0262951
Рогожникова Е.С., Шпанев А.М., Фесенко М.А. Влияние удобрений на поражение ярового ячменя болезнями в IV агроклиматической зоне Ленинградской области // Вестн. защиты раст. 2016. Т. 4, № 90. С. 56–61.
Różewicz M., Wyzińska M., Grabiński J. The Most important fungal diseases of cereals-problems and possible solutions // Agronomy, 2021, vol. 11, no. 4, pp. 714. https://doi.org/10.3390/agronomy11040714
Шарипова Р. Б., Хакимов Р. А., Хакимова Н. В. Влияние предшественников и сроков сева на перезимовку и урожайность озимой пшеницы в изменяющихся условиях регионального климата // Вестник Казанского государственного аграрного университета. 2020. Т. 15. № 2. С. 66-71. https://doi.org/10.12737/2073-0462-2020-66-71
Sharma-Poudyal D., Sharma R.C., Duveiller E. Control of Helminthosporium leaf blight of spring wheat using seed treatments and single foliar spray in Indo-Gangetic Plains of Nepal // Crop Protect, 2016, vol. 88, pp. 161–166. https://doi.org/10.1016/j.cropro.2016.06.017
Shivay Y.S., Pooniya V., Prasad R., Pal M., Bansal R. Sulphur-coated urea as a source of sulphur and an enhanced efficiency of nitrogen fertilizer for spring wheat // Cereal Res Commun, 2016, vol. 44, no. 3, pp. 513–523. https://doi.org/10.1556/0806.44.2016.002
Соловиченко В.Д., Никитин В.В., Карабутов А.П., Навольнева Е.В. Влияние севооборотов, способов обработки почв и удобрений на урожайность и экономические показатели производства пшеницы озимой // Аграрная наука. 2018. №5. С. 46-49.
Стрыгина К. В., Хлесткина Е. К. Редактирование генов пшеницы, ячменя и кукурузы с использованием системы CRISPR/Cas // Биотехнология и селекция растений. 2020. Т. 3, № 1. С. 46-56. https://doi.org/10.30901/2658-6266-2020-1-o2
Tadesse W., Bishaw Z., Assefa S. Wheat production and breeding in Sub-Saharan Africa: Challenges and opportunities in the face of climate change // International Journal of Climate Change Strategies and Management, 2019, vol. 11, no. 5, pp. 696-715. https://doi.org/10.1108/IJCCSM-02-2018-0015
Туктарова Н. Г. Влияние современных тенденций изменения климата на урожайность озимых зерновых культур // Пермский аграрный вестник. 2019. Т. 25, № 1. С. 80–86.
Váry Z., Mullins E., McElwain J.C., Doohan F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide // Glob Chang Biol, 2015, vol. 21, no. 7, pp. 2661-2669. https://doi.org/10.1111/gcb.12899
Wang B.X., Hof A.R., Ma C.S. Impacts of climate change on crop production, pests and pathogens of wheat and rice // Frontiers of Agricultural Science and Engineering, 2022, vol. 9, no. 1, pp. 4-18. https://doi.org/10.15302/J-FASE-2021432
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew // Nature Biotechnology, 2014, vol. 32, no. 9, pp. 947-951. https://doi.org/10.1038/nbt.2969
Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., Akhunov E. Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat // CRISPR J., 2018, vol.1, no. 1, pp. 65–74. https://doi.org/10.1089/crispr.2017.0010
Yang C., Fraga H., van Ieperen W. et al. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal // Climatic Change, 2019, vol. 154, no. 1, pp. 159–178. https://doi.org/10.1007/s10584-019-02419-4
Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat // Plant Journal, 2017, vol. 91, no. 4, pp. 714-724. https://doi.org/10.1111/tpj.13599
Zhao C., Liu B., Piao S., Wang X., Lobell D.B., Huang Y., Huang M., Yao Y., Bassu S., Ciais P., Durand J.L., Elliott J., Ewert F., Janssens I.A., Li T., Lin E., Liu Q., Martre P., Müller C., Peng S., Peñuelas J., Ruane A.C., Wallach D., Wang T., Wu D., Liu Z., Zhu Y., Zhu Z., Asseng S. Temperature increase reduces global yields of major crops in four independent estimates // Proceedings of the National Academy of Sciences of the United States of America, 2017, vol. 114, no. 35, pp. 9326–9331. https://doi.org/10.1073/pnas.1701762114
Zhu J.H., Dong Y., Xiao J.X., Zhen Y., Tang L. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system // Ying yong sheng tai xue bao = The journal of applied ecology, 2017, vol. 28, no. 12, pp. 3985–3993. https://doi.org/10.13287/j.1001-9332.201712.029
Просмотров аннотации: 365 Загрузок PDF: 210
Copyright (c) 2023 Simbo Diakite, Elena N. Pakina, Abdullah Behzad, Meisam Zargar, Francess Sia Saquee, Elena V. Kalabashkina, Vitaliya A. Tsymbalova, Tamara S. Astarkhanova
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.