ВЛИЯНИЕ КУМАРИНА НА ПРОДУКТИВНОСТЬ, ИММУНИТЕТ И АНТИОКСИДАНТНЫЙ СТАТУС ЗДОРОВЫХ ЦЫПЛЯТ-БРОЙЛЕРОВ
Аннотация
Обоснование. Кумарины – природные соединения (вторичные метаболиты растительного происхождения) обладают широким спектром биологической активности, в основном благодаря их способности взаимодействовать с разнообразными ферментами и рецепторами в живых организмах. Актуальность их использования в кормлении сельскохозяйственной птицы очевидна, ввиду активного поиска альтернатив кормовым антибиотикам.
Целью исследования явилась оценка влияния кумарина на продуктивность и антиоксидантный статус цыплят-бройлеров.
Материалы и методы. Объекты исследования: цыплята-бройлеры кросса Арбор Айкрес, 7-Гидроксикумарин. Эксперимент проведен на 180 головах 7-дневных цыплят-бройлеров (n=45). Контрольная – основной рацион (ОР), 1 опытная – ОР + кумарин (в дозе 1 мг/кг корма /сут., 2 опытная – ОР + кумарин в дозе 2 мг/кг корма /сут., 3 опытная – ОР + кумарин в дозе 3 мг/кг корма /сут. Гематологические показатели (число и вид лейкоцитов) учитывали на автоматическом гематологическом анализаторе URIT-2900 Vet Plus («URIT Medical Electronic Group Co., Ltd», Китай). Биохимический анализ сыворотки крови проводили на автоматическом биохимическом анализаторе CS-T240 (“Dirui Industrial Co., Ltd”, Китай).
Результаты. Включение в рацион 7-гидроксикумарина способствовало увеличению живой массы в опытных группах – на 8,6–19,4%; потреблению корма, среднесуточного прироста (на 9,2–21,1%), убойного выхода (до 4,76%), на фоне снижения расхода корма на 1 кг прироста живой массы (на 3,5–15,7%). Анализ биохимических показателей сыворотки крови показал снижение показателей общего белка, альбуминов, АЛТ (1 и 2 группа (p≤0,05)), билирубина (на 38,3–68,6%), холестерина (в 3 группе на 16,4% (p≤0,05)), триглицеридов (1 и 2 группы, p≤0,05), мочевины (41,8–65,1%; p≤0,05), на фоне повышенного уровня железа (1 и 2 группы, p≤0,05). В зависимости от дозы 7-гидроксикумарина установлено снижение количества лейкоцитов (1 группа, p≤0,05), нейтрофилов (1 и 2 группа, p≤0,05), моноцитов, эозинофилов и базофилов (p≤0,05). Антиоксидантные показатели характеризовались снижением уровня малонового диальдегида (на 63,7–77,3%), активности супероксиддисмутазы (22,4–71,5%) и увеличением активности каталазы (на 24,3–46,1%).
Заключение. Включение в рацион 7-гидроксикумарина (2 мг/кг корма /сут.) способствовало увеличению живой массы цыплят-бройлеров, поедаемости корма, убойного выхода, на фоне более низкого расхода корма на прирост 1 кг живой массы; положительно повлияло на показатели печени (АЛТ, общий билирубин), липидного и азотистого обмена (триглицериды, мочевина), антиоксидантный статус организма цыплят-бройлеров.
Скачивания
Литература
Список литературы
Дускаев Г.К., Рахматуллин Ш.Г., Кван О.В. и др. Продуктивность птицы, биохимические значения крови: эффект Bacillus cereus и кумарин // Животноводство и кормопроизводство. 2020. Т. 103, № 4. С. 197-209. https://doi.org/10.33284/2658-3135-103-4-197
Методические указания по оптимизации рецептов комбикормов для с.-х. птицы. Под ред. В.И. Фисинина, И.А. Егорова, Т.Н. Ленкова, Т.М. Околелова. Москва: ВНИТИП, 2009. С. 80.
Albiero L.R., de Andrade M.F., Marchi L.F., Landi-Librandi A.P., de Figueiredo-Rinhel A.S.G., Carvalho C.A., Kabeya L.M., de Oliveira R.D.R., Azzolini A.E.C.S., Pupo M.T., da Silva Emery F., Lucisano-Valim Y.M. Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation // Inflammation Research. 2020. Vol. 69(1). P. 115-130. https://doi.org/10.1007/s00011-019-01298-w
Annunziata F., Pinna C., Dallavalle S., Tamborini L., Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities // International Journal of Molecular Sciences. 2020. Vol. 21(13). P. 1-81. https://doi.org/10.3390/ijms21134618
Blanc M., Cormier B., Hyötyläinen T., Krauss M., Scherbak N., Cousin X., Keiter S.H. Multi- and transgenerational effects following early-life exposure of zebrafish to permethrin and coumarin 47: Impact on growth, fertility, behavior and lipid metabolism // Ecotoxicology and Environmental Safety. 2020. Vol. 205(111348). P. 1-8. https://doi.org/10.1016/j.ecoenv.2020.111348
Carneiro A., Matos M.J., Uriarte E., Santana L. Trending Topics on Coumarin and Its Derivatives in 2020 // Molecules. 2021. Vol. 26(2). P. 1-15. https://doi.org/10.3390/molecules26020501
Chavan R.R., Hosamani K.M. Microwave-assisted synthesis, computa-tional studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid // Royal Society Open Science. 2018. Vol. 5(5). P. 1-16. https://doi.org/10.1098/rsos.172435
Cheng P., Ishfaq M., Yu H., Yang Y., Li S., Li X., Fazlani S.A., Guo W., Zhang X. Curcumin ameliorates duodenal toxicity of AFB1 in chicken through inducing P-glycoprotein and downregulating cytochrome P450 enzymes // Poultry Science. 2020. Vol. 99(12). P. 7035-7045. https://doi.org/10.1016/j.psj.2020.09.055
Deryabin D., Inchagova K., Rusakova E., Duskaev G. Coumarin’s anti-quorum sensing activity can be enhanced when combined with other plant-derived small molecules // Molecules. 2021. Vol. 26(208). P. 1-10. https://doi.org/10.3390/MOLECULES26010208
Fan H., Gao Z., Ji K., Li X., Wu J., Liu Y., Wang X., Liang H., Liu Y., Li X., Liu P., Chen D., Zhao F. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways // Phytomedicine. 2019. Vol. 58. P. 152864. https://doi.org/10.1016/j.phymed.2019.152864
Feng D., Zhang A., Yang Y., Yang P. Coumarin-containing hybrids and their antibacterial activities // Archiv der Pharmazie. 2020. Vol. 353(6). P. e1900380. https://doi.org/10.1002/ardp.201900380
Frasao B., Costa M., Silva F., Rodrigues B., Baltar J., Araujo J., Moreira D., Torrezan R., Conte-Junior C. Effect of pequi (Caryocar brasiliense) and juçara (Euterpe edulis) waste extract on oxidation process stability in broiler meat treated by UV-C // PLoS One. 2018. Vol. 13(12). P. 1-25. https://doi.org/10.1371/journal.pone.0208306
Harbort C.J., Hashimoto M., Inoue H., Niu Y., Guan R., Rombolà A.D., Kopriva S., Voges M.J.E.E.E., Sattely E.S., Garrido-Oter R., Schulze-Lefert P. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis // Cell Host and Microbe. 2020. Vol. 28(6). P. 825-837. https://doi.org/10.1016/j.chom.2020.09.006
Hassan A.A., Abu Hafsa S.H., Elghandour M.M.M.Y., Kanth Reddy P.R., Monroy J.C., Salem A.Z.M. Dietary Supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits // Toxicon. 2019. Vol. 171. P. 35-42. https://doi.org/10.1016/j.toxicon.2019.09.014
Iida A., Matsushita M., Ohta T., Yamada T. Conventional and novel impacts of ferric citrate on iron deficiency anemia and phosphorus metabolism in rats // Journal of Veterinary Medical Science. 2020. Vol. 82(3). P. 379-386. https://doi.org/10.1292/jvms.19-0641
Kalia V.C., Patel S.K.S., Lee J.K., Shim W.Y., Gong C. Recent devel-opments in antimicrobial growth promoters in chicken health: Opportunities and challenges // Science of The Total Environment. 2022. Vol. 834. P. 155300. https://doi.org/10.1016/j.scitotenv.2022.155300
Katopodi A., Tsotsou E., Iliou T., Deligiannidou G.E., Pontiki E., Kontogiorgis C., Tsopelas F., Detsi A. Synthesis, Bioactivity, Pharmacokinetic and Biomimetic Properties of Multi-Substituted Coumarin Derivatives // Molecules. 2021. Vol. 26(19). P. 1-22. https://doi.org/10.3390/molecules26195999
Li S., Wang B., Zhang M., Yuan D., Li J., Li X., Liang G. Effects of berberine on the pharmacokinetics of florfenicol and levels of cytochrome P450 3A37, multidrug resistance 1, and chicken xenobiotic-sensing orphan nuclear recep-tor mRNA expression in broilers // Veterinary Medicine and Science. 2022. Vol. 8(2). P. 619-625. https://doi.org/10.1002/vms3.660
Liu H.S., Mahfuz S.U., Wu D., Shang Q.H., Piao X.S. Effect of chestnut wood extract on performance, meat quality, antioxidant status, immune function, and cholesterol metabolism in broilers // Poultry Science. 2020. Vol. 99(9). P. 4488-4495. https://doi.org/10.1016/j.psj.2020.05.053
Ma J., Li C.J., Yang J.Z., Sun H., Zhang D.M. New Phenylpropanoid and Coumarin Glycosides from the Stems of Hydrangea paniculata Sieb // Mole-cules. 2017. Vol. 22(1). P. 1-12. https://doi.org/10.3390/molecules22010133
Mu C., Wu M., Li Z. Anti-Inflammatory Effect of Novel 7-Substituted Coumarin Derivatives through Inhibition of NF-κB Signaling Pathway // Chemistry and Biodiversity. 2019. Vol. 16(3). P. e1800559. https://doi.org/10.1002/cbdv.201800559
Murayama N., Yamazaki H. Metabolic activation and deactivation of dietary-derived coumarin mediated by cytochrome P450 enzymes in rat and human liver preparations // The Journal of Toxicological Sciences. 2021. Vol. 46(8). P. 371-378. https://doi.org/10.2131/jts.46.371
Pei Q., Hu P., Zhang H., Li H., Yang T., Liu R. Daphnetin exerts an anticancer effect by attenuating the pro-inflammatory cytokines // Journal of Biochemical and Molecular Toxicology. 2021. Vol. 35(6). P. 1-8. https://doi.org/10.1002/jbt.22759
Petrovic V., Marcincak S., Popelka P., Simkova J., Martonova M., Buleca J., Marcincakova D., Tuckova M., Molnar L., Kovac G. The effect of supplementation of clove and agrimony or clove and lemon balm on growth perfor-mance, antioxidant status and selected indices of lipid profile of broiler chickens // Journal of Animal Physiology and Animal Nutrition. 2012. Vol. 96(6). P. 970-977. https://doi.org/10.1111/j.1439-0396.2011.01207.x
Qin H.L., Zhang Z.W., Ravindar L., Rakesh K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives // European Journal of Medicinal Chemistry. 2020. Vol. 207. P. 112832. https://doi.org/10.1016/j.ejmech.2020.112832
Reen F.J., Gutiérrez-Barranquero J.A., Parages M.L., O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition // Applied Microbiology and Biotechnology. 2018. Vol. 102(5). P. 2063-2073. https://doi.org/10.1007/s00253-018-8787-x
Robe K., Izquierdo E., Vignols F., Rouached H., Dubos C. The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health // Trends in Plant Science. 2021. Vol. 26(3). P. 248-259. https://doi.org/10.1016/j.tplants.2020.10.008
Salem Rashed Alyileili, Khaled El-Tarabily, Wissam Hachem Ibra-him, Mohsin Sulaiman, Ahmed Soliman Hussein. Effect of Trichoderma reesei De-graded Date Pits Supplementation on Growth Performance, Immunoglobulin Levels, and Intestinal Barrier Functions of Broiler Chickens // Recent Patents on Food, Nutrition and Agriculture. 2020. Vol. 11(2). P. 168-181. https://doi.org/10.2174/2212798410666190716163009
Singh A.K., Patel P.K., Choudhary K., Joshi J., Yadav D., Jin J.O. Quercetin and Coumarin Inhibit Dipeptidyl Peptidase-IV and Exhibits Antioxidant Properties: In Silico, In Vitro, Ex Vivo // Biomolecules. 2020. Vol. 10(2). P. 1-14. https://doi.org/10.3390/biom10020207
Sranujit R.P., Noysang C., Tippayawat P., Kooltheat N., Luetragoon T., Usuwanthim K. Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages // Plants (Basel). 2021. Vol. 10(10). P. 1-12. https://doi.org/10.3390/plants10102007
Stassen M.J.J., Hsu S.H., Pieterse C.M.J., Stringlis I.A. Coumarin Communication Along the Microbiome-Root-Shoot Axis // Trends in Plant Science. 2021. Vol. 26(2). P. 169-183. https://doi.org/10.1016/j.tplants.2020.09.008
Stringlis I., Ronnie de Jonge, Pieterse C. The Age of Coumarins in Plant-Microbe Interactions // Plant and Cell Physiology. 2019. P. 1405-1419. https://doi.org/10.1093/pcp/pcz076
Stringlis I.A., de Jonge R., Pieterse C.M.J. The Age of Coumarins in Plant-Microbe Interactions // Plant and Cell Physiology. 2019. Vol. 60(7). P. 1405-1419. https://doi.org/10.1093/pcp/pcz076
Tian D., Wang F., Duan M., Cao L., Zhang Y., Yao X., Tang J. Coumarin Analogues from the Citrus grandis (L.) Osbeck and Their Hepatoprotective Activity // Journal of Agricultural and Food Chemistry. 2019. Vol. 67(7). P. 1937-1947. https://doi.org/10.1021/acs.jafc.8b06489
Tufarelli V., Ghavami N., Nosrati M., Rasouli B., Isam T. Kadim, Ramírez L.S. The effects of peppermint (Mentha piperita L.) and chicory (Cichorium intybus L.) in comparison with a prebiotic on productive performance, blood constituents, immunity and intestinal microflora in broiler chickens // Animal biotechnology. 2022. P. 1-7. https://doi.org/10.1080/10495398.2022.2130798
Verbon E.H., Trapet P.L., Stringlis I.A., Kruijs S., Bakker P.A.H.M., Pieterse C.M.J. Iron and Immunity // Annual Review of Phytopathology. 2017. Vol. 55. P. 355-375. https://doi.org/10.1146/annurev-phyto-080516-035537
Yin J., Wang H., Lu G. Umbelliferone alleviates hepatic injury in diabetic db/db mice via inhibiting inflammatory response and activating Nrf2-mediated antioxidant // Bioscience Reports. 2018. Vol. 38(4). P. 1-17. https://doi.org/10.1042/BSR20180444
Zhang S., Ma J., Sheng L., Zhang D., Chen X., Yang J., Wang D. Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide-Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities // Frontiers in Pharmacology. 2017. Vol. 8. P. 1-16. https://doi.org/10.3389/fphar.2017.00872
References
Duskaev G.K., Rakhmatullin Sh.G., Kvan O.V. i dr. Produktivnost' ptitsy, biokhimicheskie znacheniya krovi: effekt Bacillus cereus i kumarin [Bird productivity, blood biochemical values: effect of Bacillus cereus and coumarin]. Zhivotnovodstvo i kormoproizvodstvo [Animal husbandry and fodder production], 2020, vol. 103, no. 4, pp. 197-209. https://doi.org/10.33284/2658-3135-103-4-197
Fisinina V.I., Egorova I.A., Lenkova T.N., Okolelova T.M. Metodicheskie ukazaniya po optimizatsii retseptov kombikormov dlya s.-kh. ptitsy [Methodical instructions on optimization of recipes for mixed fodders for agricultural poultry]. Moscow: VNITIP, 2009, 80 p.
Albiero L.R., de Andrade M.F., Marchi L.F., Landi-Librandi A.P., de Figueiredo-Rinhel A.S.G., Carvalho C.A., Kabeya L.M., de Oliveira R.D.R., Azzolini A.E.C.S., Pupo M.T., da Silva Emery F., Lucisano-Valim Y.M. Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation. Inflammation Research, 2020, vol. 69(1), pp. 115-130. https://doi.org/10.1007/s00011-019-01298-w
Annunziata F., Pinna C., Dallavalle S., Tamborini L., Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. International Journal of Molecular Sciences, 2020, vol. 21(13), pp. 1-81. https://doi.org/10.3390/ijms21134618
Blanc M., Cormier B., Hyötyläinen T., Krauss M., Scherbak N., Cousin X., Keiter S.H. Multi- and transgenerational effects following early-life exposure of zebrafish to permethrin and coumarin 47: Impact on growth, fertility, behavior and lipid metabolism. Ecotoxicology and Environmental Safety, 2020, vol. 205(111348), pp. 1-8. https://doi.org/10.1016/j.ecoenv.2020.111348
Carneiro A., Matos M.J., Uriarte E., Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules, 2021, vol. 26(2), pp. 1-15. https://doi.org/10.3390/molecules26020501
Chavan R.R., Hosamani K.M. Microwave-assisted synthesis, computa-tional studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. Royal Society Open Science, 2018, vol. 5(5), pp. 1-16. https://doi.org/10.1098/rsos.172435
Cheng P., Ishfaq M., Yu H., Yang Y., Li S., Li X., Fazlani S.A., Guo W., Zhang X. Curcumin ameliorates duodenal toxicity of AFB1 in chicken through inducing P-glycoprotein and downregulating cytochrome P450 enzymes. Poultry Science, 2020, vol. 99(12), pp. 7035-7045. https://doi.org/10.1016/j.psj.2020.09.055
Deryabin D., Inchagova K., Rusakova E., Duskaev G. Coumarin’s anti-quorum sensing activity can be enhanced when combined with other plant-derived small molecules. Molecules, 2021, vol. 26(208), pp. 1-10. https://doi.org/10.3390/MOLECULES26010208
Fan H., Gao Z., Ji K., Li X., Wu J., Liu Y., Wang X., Liang H., Liu Y., Li X., Liu P., Chen D., Zhao F. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways. Phytomedicine, 2019, vol. 58, pp. 152864. https://doi.org/10.1016/j.phymed.2019.152864
Feng D., Zhang A., Yang Y., Yang P. Coumarin-containing hybrids and their antibacterial activities. Archiv der Pharmazie, 2020, vol. 353(6), pp. e1900380. https://doi.org/10.1002/ardp.201900380
Frasao B., Costa M., Silva F., Rodrigues B., Baltar J., Araujo J., Moreira D., Torrezan R., Conte-Junior C. Effect of pequi (Caryocar brasiliense) and juçara (Euterpe edulis) waste extract on oxidation process stability in broiler meat treated by UV-C. PLoS One, 2018, vol. 13(12), pp. 1-25. https://doi.org/10.1371/journal.pone.0208306
Harbort C.J., Hashimoto M., Inoue H., Niu Y., Guan R., Rombolà A.D., Kopriva S., Voges M.J.E.E.E., Sattely E.S., Garrido-Oter R., Schulze-Lefert P. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host and Microbe, 2020, vol. 28(6), pp. 825-837. https://doi.org/10.1016/j.chom.2020.09.006
Hassan A.A., Abu Hafsa S.H., Elghandour M.M.M.Y., Kanth Reddy P.R., Monroy J.C., Salem A.Z.M. Dietary Supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits. Toxicon, 2019, vol. 171, pp. 35-42. https://doi.org/10.1016/j.toxicon.2019.09.014
Iida A., Matsushita M., Ohta T., Yamada T. Conventional and novel impacts of ferric citrate on iron deficiency anemia and phosphorus metabolism in rats. Journal of Veterinary Medical Science, 2020, vol. 82(3), pp. 379-386. https://doi.org/10.1292/jvms.19-0641
Kalia V.C., Patel S.K.S., Lee J.K., Shim W.Y., Gong C. Recent devel-opments in antimicrobial growth promoters in chicken health: Opportunities and challenges. Science of The Total Environment, 2022, vol. 834, pp. 155300. https://doi.org/10.1016/j.scitotenv.2022.155300
Katopodi A., Tsotsou E., Iliou T., Deligiannidou G.E., Pontiki E., Kontogiorgis C., Tsopelas F., Detsi A. Synthesis, Bioactivity, Pharmacokinetic and Biomimetic Properties of Multi-Substituted Coumarin Derivatives. Molecules, 2021, vol. 26(19), pp. 1-22. https://doi.org/10.3390/molecules26195999
Li S., Wang B., Zhang M., Yuan D., Li J., Li X., Liang G. Effects of berberine on the pharmacokinetics of florfenicol and levels of cytochrome P450 3A37, multidrug resistance 1, and chicken xenobiotic-sensing orphan nuclear recep-tor mRNA expression in broilers. Veterinary Medicine and Science, 2022, vol. 8(2), pp. 619-625. https://doi.org/10.1002/vms3.660
Liu H.S., Mahfuz S.U., Wu D., Shang Q.H., Piao X.S. Effect of chestnut wood extract on performance, meat quality, antioxidant status, immune function, and cholesterol metabolism in broilers. Poultry Science, 2020, vol. 99(9), pp. 4488-4495. https://doi.org/10.1016/j.psj.2020.05.053
Ma J., Li C.J., Yang J.Z., Sun H., Zhang D.M. New Phenylpropanoid and Coumarin Glycosides from the Stems of Hydrangea paniculata Sieb. Molecules, 2017, vol. 22(1), pp. 1-12. https://doi.org/10.3390/molecules22010133
Mu C., Wu M., Li Z. Anti-Inflammatory Effect of Novel 7-Substituted Coumarin Derivatives through Inhibition of NF-κB Signaling Pathway. Chemistry and Biodiversity, 2019, vol. 16(3), pp. e1800559. https://doi.org/10.1002/cbdv.201800559
Murayama N., Yamazaki H. Metabolic activation and deactivation of dietary-derived coumarin mediated by cytochrome P450 enzymes in rat and human liver preparations. The Journal of Toxicological Sciences, 2021, vol. 46(8), pp. 371-378. https://doi.org/10.2131/jts.46.371
Pei Q., Hu P., Zhang H., Li H., Yang T., Liu R. Daphnetin exerts an anticancer effect by attenuating the pro-inflammatory cytokines. Journal of Biochemical and Molecular Toxicology, 2021, vol. 35(6), pp. 1-8. https://doi.org/10.1002/jbt.22759
Petrovic V., Marcincak S., Popelka P., Simkova J., Martonova M., Buleca J., Marcincakova D., Tuckova M., Molnar L., Kovac G. The effect of supplementation of clove and agrimony or clove and lemon balm on growth perfor-mance, antioxidant status and selected indices of lipid profile of broiler chickens. Journal of Animal Physiology and Animal Nutrition, 2012, vol. 96(6), pp. 970-977. https://doi.org/10.1111/j.1439-0396.2011.01207.x
Qin H.L., Zhang Z.W., Ravindar L., Rakesh K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. European Journal of Medicinal Chemistry, 2020, vol. 207, pp. 112832. https://doi.org/10.1016/j.ejmech.2020.112832
Reen F.J., Gutiérrez-Barranquero J.A., Parages M.L., O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 2018, vol. 102(5), pp. 2063-2073. https://doi.org/10.1007/s00253-018-8787-x
Robe K., Izquierdo E., Vignols F., Rouached H., Dubos C. The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health. Trends in Plant Science, 2021, vol. 26(3), no. pp. 248-259. https://doi.org/10.1016/j.tplants.2020.10.008
Salem Rashed Alyileili, Khaled El-Tarabily, Wissam Hachem Ibra-him, Mohsin Sulaiman, Ahmed Soliman Hussein. Effect of Trichoderma reesei De-graded Date Pits Supplementation on Growth Performance, Immunoglobulin Levels, and Intestinal Barrier Functions of Broiler Chickens. Recent Patents on Food, Nutrition and Agriculture, 2020, vol. 11(2), pp. 168-181. https://doi.org/10.2174/2212798410666190716163009
Singh A.K., Patel P.K., Choudhary K., Joshi J., Yadav D., Jin J.O. Quercetin and Coumarin Inhibit Dipeptidyl Peptidase-IV and Exhibits Antioxidant Properties: In Silico, In Vitro, Ex Vivo. Biomolecules, 2020, vol. 10(2), pp. 1-14. https://doi.org/10.3390/biom10020207
Sranujit R.P., Noysang C., Tippayawat P., Kooltheat N., Luetragoon T., Usuwanthim K. Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages. Plants (Basel), 2021, vol. 10(10), pp. 1-12. https://doi.org/10.3390/plants10102007
Stassen M.J.J., Hsu S.H., Pieterse C.M.J., Stringlis I.A. Coumarin Communication Along the Microbiome-Root-Shoot Axis. Trends in Plant Science, 2021, vol. 26(2), pp. 169-183. https://doi.org/10.1016/j.tplants.2020.09.008
Stringlis I., Ronnie de Jonge, Pieterse C. The Age of Coumarins in Plant-Microbe Interactions. Plant and Cell Physiology, 2019, pp. 1405-1419. https://doi.org/10.1093/pcp/pcz076
Stringlis I.A., de Jonge R., Pieterse C.M.J. The Age of Coumarins in Plant-Microbe Interactions. Plant and Cell Physiology, 2019, vol. 60(7), pp. 1405-1419. https://doi.org/10.1093/pcp/pcz076
Tian D., Wang F., Duan M., Cao L., Zhang Y., Yao X., Tang J. Coumarin Analogues from the Citrus grandis (L.) Osbeck and Their Hepatoprotective Activity. Journal of Agricultural and Food Chemistry, 2019, vol. 67(7), pp. 1937-1947. https://doi.org/10.1021/acs.jafc.8b06489
Tufarelli V., Ghavami N., Nosrati M., Rasouli B., Isam T. Kadim, Ramírez L.S. The effects of peppermint (Mentha piperita L.) and chicory (Cichorium intybus L.) in comparison with a prebiotic on productive performance, blood constituents, immunity and intestinal microflora in broiler chickens. Animal biotechnology, 2022, pp. 1-7. https://doi.org/10.1080/10495398.2022.2130798
Verbon E.H., Trapet P.L., Stringlis I.A., Kruijs S., Bakker P.A.H.M., Pieterse C.M.J. Iron and Immunity. Annual Review of Phytopathology, 2017, vol. 55, pp. 355-375. https://doi.org/10.1146/annurev-phyto-080516-035537
Yin J., Wang H., Lu G. Umbelliferone alleviates hepatic injury in diabetic db/db mice via inhibiting inflammatory response and activating Nrf2-mediated antioxidant. Bioscience Reports, 2018, vol. 38(4), pp. 1-17. https://doi.org/10.1042/BSR20180444
Zhang S., Ma J., Sheng L., Zhang D., Chen X., Yang J., Wang D. Total Coumarins from Hydrangea paniculata Show Renal Protective Effects in Lipopolysaccharide-Induced Acute Kidney Injury via Anti-inflammatory and Antioxidant Activities. Frontiers in Pharmacology, 2017, vol. 8, pp. 1-16. https://doi.org/10.3389/fphar.2017.00872
Просмотров аннотации: 144 Загрузок PDF: 144
Copyright (c) 2023 Galimzhan K. Duskaev, Tatyana A. Klimova
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.