СЕЛЕКЦИОННО-ГЕНЕТИЧЕСКАЯ ОЦЕНКА МЕЖДУНАРОДНОЙ КОЛЛЕКЦИИ ОЗИМОЙ ПШЕНИЦЫ В УСЛОВИЯХ ЗАПАДНОЙ СИБИРИ

  • Inna V. Pototskaya Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» https://orcid.org/0000-0003-3574-2875
  • Sergey S. Shepelev Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» https://orcid.org/0000-0002-4282-8725
  • Yerlan K. Turuspekov Институт биологии и биотехнологии растений https://orcid.org/0000-0001-8590-1745
  • Alexey I. Morgounov Казахский агротехнический исследовательский университет имени С. Сейфуллина https://orcid.org/0000-0001-7082-5655
  • Alexandr S. Chursin Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» https://orcid.org/0000-0001-6797-6145
  • Alexandr М. Kovalchuk Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» https://orcid.org/0009-0006-8371-7243
  • Timur V. Savin НПЦ Зернового хозяйства им. А.И. Бараева https://orcid.org/0000-0002-3550-647X
  • Vladimir P. Shamanin Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина» https://orcid.org/0000-0003-4767-9957
Ключевые слова: озимая пшеница, коллекция, генотипирование, KASP-маркеры, хозяйственно-ценные признаки

Аннотация

В Западной Сибири озимая пшеница рассматривается в качестве одного из источника увеличения производства зерна благодаря повышенной урожайности и лучшему использованию биоклиматических ресурсов региона.

Целью исследования являлась селекционная оценка и выделение генетических источников из международной коллекции образцов озимой мягкой пшеницы в качестве исходного материала для создания высокоурожайных сортов, устойчивых к неблагоприятным факторам среды.

Материалы и методы. Проведена полевая оценка 96 образцов озимой мягкой пшеницы из разных стран в 2022–2023 гг. с применением общепринятых селекционных методик. 96 образцов генотипированы с использованием 55 KASP-маркеров, разработанных в Институте биологии и биотехнологии растений (Казахстан).

Результаты. У селекционного материала из Турции преобладали более позднеспелые формы (313 сут.); образцы американской селекции отличались низкорослостью (57,5 см), высокой продуктивной кустистостью (2,42 шт./раст.) и повышенной урожайностью (271 г/м2); образцы из России и Болгарии имели высокие показатели зимостойкости растений – 66,7% и 69,9% соответственно. Среднее число аллелей составило 2, число эффективных аллелей – 1,42. Изучение популяционной структуры и генетического сходства образцов коллекции из разных географических групп выявило их деление на шесть субпопуляций, независимо от происхождения образцов. Информационный индекс Шеннона варьировал от 0,058 до 0,693 со средним значением 0,40; ожидаемая гетерозиготность (0,25) свидетельствуют об относительно высоком генетическом разнообразии изученных форм.

Заключение. Результаты проведенных исследований могут быть успешно использованы в селекции для создания высокоурожайных сортов озимой пшеницы, устойчивых к неблагоприятным факторам среды и отличающихся высоким качеством зерна.

EDN: LMBBIY

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Inna V. Pototskaya, Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

д-р с.-х. наук, доцент, профессор кафедры агрономии, селекции и семеноводства

Sergey S. Shepelev, Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

канд. с.-х. наук, доцент, зав. лабораторией генетики зерновых культур

Yerlan K. Turuspekov, Институт биологии и биотехнологии растений

канд. биол. наук, зав. лабораторией молекулярной генетики

Alexey I. Morgounov, Казахский агротехнический исследовательский университет имени С. Сейфуллина

канд. с.-х. наук, ведущий научный сотрудник

Alexandr S. Chursin, Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

канд. с.-х. наук, зав. лабораторией селекции и семеноводства полевых культур

Alexandr М. Kovalchuk, Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

аспирант

Timur V. Savin, НПЦ Зернового хозяйства им. А.И. Бараева

канд. биол. наук, директор

Vladimir P. Shamanin, Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный аграрный университет имени П.А. Столыпина»

д-р с.-х. наук, профессор, профессор кафедры агрономии, селекции и семеноводства

Литература

References

Borovik A.N., Bespalova L.A., Kolesnikov F.A., Ilyina N.A., Chataev A.R. Klassika – novyj sort pshenicy myagkoj ozimoj [Classic – a new variety of common winter wheat]. Trudy Kubanskogo GAU [Proceedings of the Kuban SAU], 2021, vol. 9, pp. 32-35. https://doi.org/10.21515/1999-1703-91-32-35

Metodicheskie ukazaniya. Izuchenie kollekcii pshenicy [Methodical instructions. Exploring the wheat collection]. V.F. Dorofeev (editor). L: VIR, 1985, 28 p.

Pototskaya I.V., Shepelev S.S., Chursin A.S., Kovalchuk A.M., Shamanin V.P. Selekcionnaya ocenka sortoobrazcov ozimoj pshenicy v usloviyah yuzhnoj lesostepi Zapadnoj Sibiri [Breeding estimation oe the winter wheat varieties in the conditions of the southern forest-steppe of Western Siberia]. Zernovoe hozyajstvo Rossii [Grain Economy of Russia], 2023, vol. 15, no. 4, pp. 21-26. https://doi.org/10.31367/2079-8725-2023-87-4-21-27

Skripka O.V., Podgorny S.V., Samofalov A.P., Chernova V.L. Selekciya sortov ozimoj myagkoj pshenicy intensivnogo tipa v FGBNU «ANC «Donskoj» [The breeding work in the winter bread wheat varieties of intensive type in the FSBSI “Agricultural Research Center “Donskoy”]. Zernovoe hozyajstvo Rossii [Grain Economy of Russia], 2020, no. 6 (72), рр. 19-25. https://doi.org/10.31367/2079-8725-2020-72-6-19-25

Amalova A., Yermekbayev K., Griffiths S., Abugalieva S., Babkenov A., Fedorenko E., Abugalieva A., Turuspekov Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva× Paragon mapping population harvested in three regions of Kazakhstan. Peer J, 2022, vol. 10, рр. e14324. https://doi.org/10.7717/peerj.14324

Baranova O., Solyanikova V., Kyrova E., Kon’kova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L. et al. Evaluation of Resistance to Stem Rust and Identification of Sr Genes in Russian Spring and Winter Wheat Cultivars in the Volga Region. Agriculture, 2023, vol. 13, рр. 635. https://doi.org/10.3390/ agriculture13030635

Belyaeva M., Bokusheva R. Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach. Climatic Change, 2018, vol. 149, рр. 205-17. https://doi.org/10.1007/s10584-018-2221-3

Cabrera A., Souza E., Guttieri M., Sturbaum A., Hoffstetter A., Sneller C. Genetic Diversity, Linkage Disequilibrium, and Genome Evolution in Soft Winter Wheat. Crop Science, 2014, vol. 56, no. 6, рр. 2433-2448. https://doi.org/ 10.2135/cropsci2013.09.0601

Chen X., Min D., Yasir T.A., Hu Y.-G. Genetic Diversity, Population Structure and Linkage Disequilibrium in Elite Chinese Winter Wheat Investigated with SSR Markers. PLoS ONE, 2012, vol. 7, no. 9, рр. e44510. https://doi.org/10.1371/journal.pone.0044510

Delaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation. Version II. Plant Molecular Biology Reports, 1983, vol. 4, рр. 19-21.

Dowla N., Edwards I., O’Hara G., Islam S., Ma W. Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes. Engineering, 2018, vol. 4, no. 4, рр. 514-522. https://doi.org/10.1016/j.eng.2018.06.005

Earl D.A., VonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, 2012, vol. 4, рр. 359-361.

El Baouchi A., Ibriz M., Dreisigacker S., Lopes M.S., Garcia M.S. Genetic Diversity and Genome-Wide Association Study for the Phenology Response of Winter Wheats of North America, Western Asia, and Europe. Plants, 2023, vol. 12, рр. 4053. https://doi.org/10.3390/plants12234053

Eltaher S., Hashem M., Ahmed A.A.M., Baenziger P.S., Börner A., Sallam A. Effectiveness of TaDreb-B1 and 1-FEH w3 KASP Markers in Spring and Winter Wheat Populations for Marker-Assisted Selection to Improve Drought Tolerance. International Journal of Molecular Sciences, 2023, vol. 24, рр. 8986. https://doi.org/10.3390/ ijms24108986

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, vol. 14, no. 8, рр. 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Fowler D.B., N'Diaye A., LaudenciaChingcuanco D., Pozniak C.J. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS ONE, 2016, vol. 11, no. 3, рр. 0152185. https://doi.org/10.1371/journal. pone.0152185

François B., Bouchet S., Robert S., De Oliveira R., Rimbert H., Kitt J., Choulet F. International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux E. Worldwide phylogeography and history of wheat genetic diversity. Science Advences, 2019, vol. 5, no. 5, рр. eaav0536. https://doi.org/10.1126/sciadv.aav0536

Genievskaya Y., Turuspekov Y., Rsaliyev A., Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ, 2020, vol. 8, рр. e9820.

Giannakaki P., Calanca P. Russian winter and spring wheat productivity, heat stress and drought conditions at flowering, and the role of atmospheric blocking. Climate Research, 2019, vol. 78, рр. 135-147. https://doi.org/10.3354/cr01563.4

Hammer O., Harper D.A. Past: paleontological statistics software package for educaton and data analysis. Paleontologiсal electronica, 2001, vol. 4, no. 1, рр. 1.

Husenov B., Muminjanov H., Dreisigacker S., Otambekova M., Akin B., Subasi K., Rasheed A., Shepelev S., Morgounov A. Genetic diversity and agronomic performance of wheat landraces currently grown in Tajikistan. Crop Science, 2021, vol. 61, no. 4, рр. 2548-2564. https://doi.org/10.1002/csc2.20463

Irshad A., Guo H., Ur Rehman S., Wang X., Gu J., Xiong H., Xie Y., Zhao L., Zhao S., Wang C., Liu L. Identification of Single Nucleotide Polymorphism in TaSBE III and Development of KASP Marker Associated With Grain Weight in Wheat. Frontiers in Genetics, 2021, vol. 12, рр. 697294. https://doi.org/10.3389/fgene.2021.697294

Karsai I., Vida G., Petrovics S., Petcu E., Kobiljski B., Ivanovska S., Bedo Z., Veisz O. Assessment of the spatial genotypic and phenotypic diversity present in the various winter wheat breeding programs in Southeast Europe. Euphytica, 2012, vol. 186, рр. 139-151. https://doi.org/10.1007/s10681-011-0510-2

Kaur B., Mavi G.S., Gill M.S., Saini D.K. Utilization of KASP technology for wheat improvement. Cereal Research Communications, 2020, vol. 48, рр. 409-421. https://doi.org/10.1007/s42976-020-00057-6

Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science, 2022, vol. 27, рр. 922-935. https://doi.org/10.1016/j.tplants.2022.01.008

Liu S., Rudd J.C., Bai G., Haley S.D., Ibrahim A.M.H., Xue Q., Hays D.B., Graybosch R.A., Devkota R.N., Amand P.St. Molecular Markers Linked to Important Genes in Hard Winter Wheat. Crop science, 2014, vol. 54, no. 4, рр. 1304-1321. https://doi.org/10.2135/cropsci2013.08.0564

Liu L., Yuan C.Y., Wang M.N., See D.R., Zemetra R.S., Chen X.M. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles. Theoretical and Applied Genetics, 2019, vol. 132, рр. 1677-1691. https://doi.org/10.1007/s00122-019-03307-2

Miedaner T., Akel1 W., Flath K., Jacobi A., Taylor M., Longin F., Würschum T. Molecular tracking of multiple disease resistance in a winter wheat diversity panel. Theoretical and Applied Genetics, 2020, vol. 133, рр. 419-431. https://doi.org/10.1007/s00122-019-03472-4

Pandurangan S., Workman C., Nilsen K., Kumar S. Introduction to Marker-Assisted Selection in Wheat Breeding. In Accelerated Breeding of Cereal Crops. Springer Protocols Handbooks, 2022, рр. 77-117. https://doi.org/10.1007/978-1-0716-1526-3

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2012, vol. 6, no. 1, рр. 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, vol. 155, no. 2, рр. 945-959. https://doi.org/10.1093/genetics/155.2.945

Rasheed A., Wen W.E., Gao F.M., Zhai S.N., Jin H., Liu J.D., Guo Q., Zhang Y.J., Dreisigacker S., Xia X.C., He Z.H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, vol. 129, no. 10, рр. 1843-1860.

Sthapit S.R., Marlowe K., Covarrubias D.C., Ruff T.M., Eagle J.D., McGinty Е.M., Hooker M.A., Duong N.B., Skinner D.Z., See D.R. Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest. Crop Science, 2020, vol. 60, no. 6, рр. 3175-3190. https://doi.org/10.1002/csc2.20299

Tadesse W., Sanchez-Garcia M., Assefa S.G., Amri A., Bishaw Z., Ogbonnaya F.C., Baum M. Genetic Gains in Wheat Breeding and Its Role in Feeding the World. Crop Breeding, Genetics, and Genomics, 2019, vol. 1, рр. e190005. https://doi.org/10.20900/cbgg20190005

Templ B., Calanca P. Critical increase in the occurrence of heat stress during reproductive growth in Russian wheat beyond 1.5 C global warming. Weather and Climate Extremes, 2020, vol. 30, рр. 100281. https://doi.org/10.1016/j.wace.2020.100281

Turuspekov Y., Baibulatova A., Yermekbayev K., Tokhetova L., Chudinov V., Sereda G., Ganal M.W., Griffiths S., Abugalieva S. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan. BMC Plant Biology, 2017, vol. 17, no. 1, рр. 51-61. https://doi.org/10.1186/s12870-017-1131-2

Vikram P., Franco J., Burgueño-Ferreira J., Li H., Sehgal D., Pierre C.S., Ortiz C., Sneller C., Tattaris M., Guzman C. et al. Unlocking the genetic diversity of Creole wheats. Scientific Reports, 2016, vol. 6, рр. 23092. https://doi.org/10.1038/srep23092

Zhao J., Wang Z., Liu H., Zhao J., Li T., Hou J., Zhang X., Chenyang Н. Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biology, 2019, vol. 19, рр. 5. https://doi.org/10.1186/s12870-018-1612-y

Список литературы

Боровик А.Н., Беспалова Л.А., Колесников Ф.А., Ильина Н.А., Чатаев А.Р. Классика – новый сорт пшеницы мягкой озимой // Труды Кубанского ГАУ. 2021. № 9. С. 32-35.

Методические указания. Изучение коллекции пшеницы. Под ред. В.Ф. Дорофеева. Л.: ВИР, 1985. 27 с.

Потоцкая И.В., Шепелев С.С., Чурсин А.С., Ковальчук А.М., Шаманин В.П. Селекционная оценка сортообразцов озимой пшеницы в условиях южной лесостепи Западной Сибири // Зерновое хозяйство России. 2023. Т. 15, № 4. С. 21-26. https://doi.org/10.31367/2079-8725-2023-87-4-21-27

Скрипка О.В., Подгорный С.В., Самофалов А.П., Чернова В.Л. Селекция сортов озимой мягкой пшеницы интенсивного типа в ФГБНУ «АНЦ «Донской» // Зерновое хозяйство России. 2020. № 6 (72). С. 19-25. https://doi.org/10.31367/2079-8725-2020-72-6-19-25

Amalova A., Yermekbayev K., Griffiths S., Abugalieva S., Babkenov A., Fedorenko E., Abugalieva A., Turuspekov Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva× Paragon mapping population harvested in three regions of Kazakhstan // Peer J, 2022, vol. 10, рр. e14324. https://doi.org/10.7717/peerj.14324

Baranova O., Solyanikova V., Kyrova E., Kon’kova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L. et al. Evaluation of Resistance to Stem Rust and Identification of Sr Genes in Russian Spring and Winter Wheat Cultivars in the Volga Region // Agriculture, 2023, vol. 13, рр. 635. https://doi.org/10.3390/ agriculture13030635

Belyaeva M., Bokusheva R. Will climate change benefit or hurt Russian grain production? A statistical evidence from a panel approach // Climatic Change, 2018, vol. 149, рр. 205-17. https://doi.org/10.1007/s10584-018-2221-3

Cabrera A., Souza E., Guttieri M., Sturbaum A., Hoffstetter A., Sneller C. Genetic Diversity, Linkage Disequilibrium, and Genome Evolution in Soft Winter Wheat // Crop Science, 2014, vol. 56, no. 6, рр. 2433-2448. https://doi.org/10.2135/cropsci2013.09.0601

Chen X., Min D., Yasir T.A., Hu Y.-G. Genetic Diversity, Population Structure and Linkage Disequilibrium in Elite Chinese Winter Wheat Investigated with SSR Markers // PLoS ONE, 2012, vol. 7, no. 9, рр. e44510. https://doi.org/10.1371/journal.pone.0044510

Delaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation. Version II // Plant Molecular Biology Reports, 1983, vol. 4, рр. 19-21.

Dowla N., Edwards I., O’Hara G., Islam S., Ma W. Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes // Engineering, 2018, vol. 4, no. 4, рр. 514-522. https://doi.org/10.1016/j.eng.2018.06.005

Earl D.A., VonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservation genetics resources, 2012, vol. 4, рр. 359-361.

El Baouchi A., Ibriz M., Dreisigacker S., Lopes M.S., Garcia M.S. Genetic Diversity and Genome-Wide Association Study for the Phenology Response of Winter Wheats of North America, Western Asia, and Europe // Plants, 2023, vol. 12, рр. 4053. https://doi.org/10.3390/plants12234053

Eltaher S., Hashem M., Ahmed A.A.M., Baenziger P.S., Börner A., Sallam A. Effectiveness of TaDreb-B1 and 1-FEH w3 KASP Markers in Spring and Winter Wheat Populations for Marker-Assisted Selection to Improve Drought Tolerance // International Journal of Molecular Sciences, 2023, vol. 24, рр. 8986. https://doi.org/10.3390/ ijms24108986

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study // Molecular Ecology, 2005, vol. 14, no. 8, рр. 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Fowler D.B., N'Diaye A., LaudenciaChingcuanco D., Pozniak C.J. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.) // PLoS ONE, 2016, vol. 11, no. 3, рр. 0152185. https://doi.org/10.1371/journal. pone.0152185

François B., Bouchet S., Robert S., De Oliveira R., Rimbert H., Kitt J., Choulet F. International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux E. Worldwide phylogeography and history of wheat genetic diversity // Science Advences, 2019, vol. 5, no. 5, рр. eaav0536. https://doi.org/10.1126/sciadv.aav0536

Genievskaya Y., Turuspekov Y., Rsaliyev A., Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan // PeerJ, 2020, vol. 8, рр. e9820

Giannakaki P., Calanca P. Russian winter and spring wheat productivity, heat stress and drought conditions at flowering, and the role of atmospheric blocking // Climate Research, 2019, vol. 78, рр. 135-147. https://doi.org/10.3354/cr01563.4

Hammer O., Harper D.A. Past: paleontological statistics software package for educaton and data analysis // Paleontologiсal electronica, 2001, vol. 4, no. 1, рр. 1

Husenov B., Muminjanov H., Dreisigacker S., Otambekova M., Akin B., Subasi K., Rasheed A., Shepelev S., Morgounov A. Genetic diversity and agronomic performance of wheat landraces currently grown in Tajikistan // Crop Science, 2021, vol. 61, no. 4, рр. 2548-2564. https://doi.org/10.1002/csc2.20463

Irshad A., Guo H., Ur Rehman S., Wang X., Gu J., Xiong H., Xie Y., Zhao L., Zhao S., Wang C., Liu L. Identification of Single Nucleotide Polymorphism in TaSBE III and Development of KASP Marker Associated With Grain Weight in Wheat // Frontiers in Genetics, 2021, vol. 12, рр. 697294. https://doi.org/10.3389/fgene.2021.697294

Karsai I., Vida G., Petrovics S., Petcu E., Kobiljski B., Ivanovska S., Bedo Z., Veisz O. Assessment of the spatial genotypic and phenotypic diversity present in the various winter wheat breeding programs in Southeast Europe // Euphytica, 2012, vol. 186, рр. 139-151. https://doi.org/10.1007/s10681-011-0510-2

Kaur B., Mavi G.S., Gill M.S., Saini D.K. Utilization of KASP technology for wheat improvement // Cereal Research Communications, 2020, vol. 48, рр. 409-421. https://doi.org/10.1007/s42976-020-00057-6

Kidokoro S., Shinozaki K., Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses // Trends in Plant Science, 2022, vol. 27, рр. 922-935. https://doi.org/10.1016/j.tplants.2022.01.008

Liu S., Rudd J.C., Bai G., Haley S.D., Ibrahim A.M.H., Xue Q., Hays D.B., Graybosch R.A., Devkota R.N., Amand P.St. Molecular Markers Linked to Important Genes in Hard Winter Wheat // Crop science, 2014, vol. 54, no. 4, рр. 1304-1321. https://doi.org/10.2135/cropsci2013.08.0564

Liu L., Yuan C.Y., Wang M.N., See D.R., Zemetra R.S., Chen X.M. QTL analysis of durable stripe rust resistance in the North American winter wheat cultivar Skiles // Theoretical and Applied Genetics, 2019, vol. 132, рр. 1677-1691. https://doi.org/10.1007/s00122-019-03307-2.

Miedaner T., Akel1 W., Flath K., Jacobi A., Taylor M., Longin F., Würschum T. Molecular tracking of multiple disease resistance in a winter wheat diversity panel // Theoretical and Applied Genetics, 2020, vol. 133, рр. 419-431. https://doi.org/10.1007/s00122-019-03472-4

Pandurangan S., Workman C., Nilsen K., Kumar S. Introduction to Marker-Assisted Selection in Wheat Breeding // In Accelerated Breeding of Cereal Crops. Springer Protocols Handbooks, 2022, рр. 77-117. https://doi.org/10.1007/978-1-0716-1526-3

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research // Molecular Ecology Notes, 2012, vol. 6, no. 1, рр. 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics, 2000, vol. 155, no. 2, рр. 945-959. https://doi.org/10.1093/genetics/155.2.945

Rasheed A., Wen W.E., Gao F.M., Zhai S.N., Jin H., Liu J.D., Guo Q., Zhang Y.J., Dreisigacker S., Xia X.C., He Z.H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat // Theoretical and Applied Genetics, 2016, vol. 129, no. 10, рр. 1843-1860.

Sthapit S.R., Marlowe K., Covarrubias D.C., Ruff T.M., Eagle J.D., McGinty Е.M., Hooker M.A., Duong N.B., Skinner D.Z., See D.R. Genetic diversity in historical and modern wheat varieties of the U.S. Pacific Northwest // Crop Science, 2020, vol. 60, no. 6, рр. 3175-3190. https://doi.org/10.1002/csc2.20299

Tadesse W., Sanchez-Garcia M., Assefa S.G., Amri A., Bishaw Z., Ogbonnaya F.C., Baum M. Genetic Gains in Wheat Breeding and Its Role in Feeding the World // Crop Breeding, Genetics, and Genomics, 2019, vol. 1, рр. e190005. https://doi.org/10.20900/cbgg20190005

Templ B., Calanca P. Critical increase in the occurrence of heat stress during reproductive growth in Russian wheat beyond 1.5 C global warming // Weather and Climate Extremes, 2020, vol. 30, рр. 100281. https://doi.org/10.1016/j.wace.2020.100281

Turuspekov Y., Baibulatova A., Yermekbayev K., Tokhetova L., Chudinov V., Sereda G., Ganal M.W., Griffiths S., Abugalieva S. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan // BMC Plant Biology, 2017, vol. 17, no. 1, рр. 51-61. https://doi.org/10.1186/s12870-017-1131-2

Vikram P., Franco J., Burgueño-Ferreira J., Li H., Sehgal D., Pierre C.S., Ortiz C., Sneller C., Tattaris M., Guzman C. et al. Unlocking the genetic diversity of Creole wheats // Scientific Reports, 2016, vol. 6, рр. 23092. https://doi.org/10.1038/srep23092

Zhao J., Wang Z., Liu H., Zhao J., Li T., Hou J., Zhang X., Chenyang Н. Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century // BMC Plant Biology, 2019, vol. 19, рр. 5. https://doi.org/10.1186/s12870-018-1612-y


Просмотров аннотации: 27
Загрузок PDF: 17
Опубликован
2024-12-30
Как цитировать
Pototskaya, I., Shepelev, S., Turuspekov, Y., Morgounov, A., Chursin, A., Kovalchuk, A., Savin, T., & Shamanin, V. (2024). СЕЛЕКЦИОННО-ГЕНЕТИЧЕСКАЯ ОЦЕНКА МЕЖДУНАРОДНОЙ КОЛЛЕКЦИИ ОЗИМОЙ ПШЕНИЦЫ В УСЛОВИЯХ ЗАПАДНОЙ СИБИРИ. Siberian Journal of Life Sciences and Agriculture, 16(6), 313-338. https://doi.org/10.12731/2658-6649-2024-16-6-995
Раздел
Система селекции и семеноводства